COHOMOLOGY OF QUADRATIC NAMBU-POISSON TENSOR

by

Hajime Sato(*) and Nobutada Nakanishi(**)

1. Introduction

In the present paper, we compute Nambu-Poisson cohomology in the case of quadratic Nambu-Poisson tensor. The notion of Nambu-Poisson cohomology was first introduced by R. Ibáñez *et al* [2]. Let us consider $\eta=(x^2+y^2+z^2+u^2)\frac{\partial}{\partial x}\wedge\frac{\partial}{\partial y}\wedge\frac{\partial}{\partial z}$, which is a Nambu-Poisson tensor of order 3 defined on $\mathbb{R}^4(x,y,z,u)$. To compute $H^*_{NP}(\mathbb{R}^4,\eta)$, we will essentially use the results of computations of $H^*_{NP}(\mathbb{R}^3,\eta')$, where $\eta'=(x^2+y^2+z^2)\frac{\partial}{\partial x}\wedge\frac{\partial}{\partial y}\wedge\frac{\partial}{\partial z}$.

2. Computation of Nambu-Poisson Cohomology

2.1. **Notation and General Remarks.** First of all we review an equivalent cohomology to Nambu-Poisson cohomology, which is due to P. Monnier [3]. Let M be an m-dimensional C^{∞} -manifold with a volume form Ω . For $h \in C^{\infty}(M)$, we define the operator $d_h : \Omega^k(M) \to \Omega^{k+1}(M)$ by $d_h(\alpha) = hd\alpha - kdh \wedge \alpha$. It is easy to prove that $d_h \circ d_h = 0$. We denote by $H_h^*(M)$ the cohomology of this complex. Let η be an element of $\Gamma(\Lambda^m(TM))$. Recall that such η becomes always a Nambu-Poisson tensor [4]. Then P. Monnier proved the following [3].

This work has been supported by grant-in-aid of Group Researches of Gifu-Keizai University (2002–2004). We would like to express our deep thanks to Y. Agaoka for helpful discussions.

^(*) Graduate School of Mathematics, Nagoya University

^(**) Department of Mathematics, Gifu-Keizai University

Proposition 2.1. *If we put* $h = i_{\eta}\Omega$, then $H_{NP}^*(M, \eta)$ *is isomorphic to* $H_h^*(M)$.

It is easy to see that if g is a function on M which does not vanish on M, then the cohomologies $H_h^*(M)$ and $H_{hq}^*(M)$ are isomorphic.

Throughout this paper, we will use the following notations:

- \mathcal{F} is the algebra of real-valued C^{∞} functions on $\mathbb{R}^4(x, y, z, u)$;
- \mathcal{F}' is the algebra of real-valued C^{∞} functions on $\mathbb{R}^3(x, y, z)$;
- $\chi(\mathbb{R}^4)$ is the \mathcal{F} -module of vector fields on \mathbb{R}^4 ;

$$\bullet \ \chi'(\mathbb{R}^4) = \left\{ A \frac{\partial}{\partial x} + B \frac{\partial}{\partial y} + C \frac{\partial}{\partial z} \, \big| \ A, \, B, \, C \in \mathcal{F} \right\};$$

- $f = x^2 + y^2 + z^2 + u^2$;
- $f' = x^2 + y^2 + z^2$;
- Ω^k = the space of k-forms on \mathbb{R}^4 ;
- $\Omega'_1 = \{A dx + B dy + C dz \mid A, B, C \in \mathcal{F}\};$
- $\Omega'_2 = \{Ady \wedge dz + Bdz \wedge dx + Cdx \wedge dy \mid A, B, C \in \mathcal{F}\};$
- $\Omega'_3 = \{A dx \wedge dy \wedge dz \mid A \in \mathcal{F}\}.$

If we choose $\omega = dx \wedge dy \wedge dz$ as the volume form on \mathbb{R}^3 , then we have $f' = i_{\eta'}\omega$. First we compute $H^*_{NP}(\mathbb{R}^3, \eta')$, which is isomorphic to $H^*_{f'}(\mathbb{R}^3)$ by Proposition 2.1. In the formal category (i.e. all coefficients of differential forms are formal power series), the following results were obtained by P. Monnier [3].

Proposition 2.2. In the formal category, $H_{f'}^0 \cong \mathbb{R}$, $H_{f'}^1 \cong \mathbb{R}$, $H_{f'}^2 \cong 0$ and $H_{f'}^3 \cong \mathbb{R}$.

We want to compute $H_{f'}^*$ in the C^{∞} -category, and we will show that Proposition 2.2 still holds even in the C^{∞} -category. First it is clear that $H_{f'}^0 \cong \mathbb{R}$. R. Ibáñez *et al* [2] proved independently of P. Monnier [3] that $H_{f'}^1 \cong \mathbb{R}$. Hence it only remains to compute $H_{f'}^2$ and $H_{f'}^3$. To compute them, we use Proposition 2.2.

Let β be a 2-cocycle. Then by definition, β satisfies $f'd\beta=2\,df'\wedge\beta$. Denote by $[\beta]$ the formal Taylor expansion of β at the origin. Then by Proposition 2.2, there exists a formal 1-form $[\alpha]$ such that $[\beta]=f'd[\alpha]-df'\wedge[\alpha]$. Hence we can find a 1-form α , whose formal Taylor expansion at the origin is $[\alpha]$. Put $\beta'=\beta-(f'd\alpha-df'\wedge\alpha)$. Then β' is flat (i.e. $[\beta']=0$) and satisfies $f'd\beta'=2\,df'\wedge\beta'$. β' . β' is also flat and $d\left(\frac{\beta'}{f'^2}\right)=\frac{1}{f'^3}\left(f'd\beta'-2\,df'\wedge\beta'\right)=0$. Hence there exists a flat 1-form α such that $\beta'=d\alpha$. Put $\alpha=\frac{\alpha'}{f'}$. Then α' is a flat 1-form, and we

_ 2 _

get $\beta' = f'^2 d\tilde{\alpha} = f' d\alpha' - df' \wedge \alpha'$. Finally we have

$$\beta = f'd(\alpha + \alpha') - df' \wedge (\alpha + \alpha').$$

This means $H_{f'}^2 = 0$.

Next let us compute $H^3_{f'}$. The space of 3-cocycles $Z^3_{f'}$ is clearly isomorphic to \mathcal{F}' . And the space of 3-coboundaries $B^3_{f'}$ is isomorphic to the following space \mathcal{F}_1 .

$$\mathcal{F}_{1} = \left\{ f' \left(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z} \right) - 4(xA + yB + zC); A, B, C \in \mathcal{F}' \right\}$$

Lemma 2.3. Let \mathcal{I} be the subspace of \mathcal{F}' consisting of functions which are flat at the origin. Then $\mathcal{I} \subset \mathcal{F}_1$.

Proof. For $q \in \mathcal{I}$, put

$$A = (f')^2 \int \frac{q}{(f')^3} dx$$
, $B = 0$, $C = 0$.

Then $f'(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}) - 4(xA + yB + zC) = q$. Hence we have that $q \in \mathcal{F}_1$. \square

Denote by F' (resp. F_1) the formal algebra corresponding to \mathcal{F}' (resp. \mathcal{F}_1). Let T be a mapping from \mathcal{F}' to F', where T(h) is the formal Taylor expansion of h at the origin. Let $\pi: F' \to F'/F_1$ be the canonical projection, and put $\tilde{T} = \pi \circ T$. Then \tilde{T} is a surjective linear mapping and it is clear that ker $\tilde{T} = \mathcal{F}_1$ by Lemma 2.3. Since $F'/F_1 \cong \mathbb{R}$ by Proposition 2.2, we get that

$$H_{f'}^3 \cong \mathcal{F}'/\mathcal{F}_1 \cong F'/F_1 \cong \mathbb{R}$$
.

Thus we obtained the following proposition.

Proposition 2.4. In C^{∞} -category, it still holds that $H_{f'}^0 \cong \mathbb{R}$, $H_{f'}^1 \cong \mathbb{R}$, $H_{f'}^2 = 0$ and $H_{f'}^3 \cong \mathbb{R}$.

For the Nambu-Poisson tensor $\eta = f \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}$ defined on \mathbb{R}^4 , we know that

$$\sharp_2(\Omega^2) = \{ fX | X \in \chi'(\mathbb{R}^4) \}.$$

 $\sharp_2(\Omega^2)$ is denoted by \mathfrak{g} , which is isomorphic to $\Omega^2/\ker \sharp_2$. Note also that $\Omega^2/\ker \sharp_2$ is isomorphic to Ω'_2 . \mathfrak{g} is, of course, a Lie subalgebra of $\chi(\mathbb{R}^4)$.

Since $H_{NP}^0(\mathbb{R}^4, \eta) = \{g \in \mathcal{F} \mid Xg = 0 \text{ for all } X \in \mathfrak{g}\}$, it is clear that $H_{NP}^0(\mathbb{R}^4, \eta) \cong C^{\infty}(\mathbb{R})$.

In computing Nambu-Poisson cohomology, we use Proposition 2.4. To do this, we need the formal Taylor expansion of a function $A \in \mathcal{F}$ with respect to the variable u, which is denoted by \overline{A} . In other words, three variables x, y and z are regarded as parameters. And we say that \overline{A} is the u-formal Taylor expansion of A. This terminology will be also used for differential forms and vector fields. Thus we can express \overline{A} (similarly \overline{B} and \overline{C}) as follows.

(1)
$$\begin{cases} \overline{A} = a_0 + ua_1 + u^2 a_2 + \cdots, \\ \overline{B} = b_0 + ub_1 + u^2 b_2 + \cdots, \\ \overline{C} = c_0 + uc_1 + u^2 c_2 + \cdots, \end{cases}$$

where a_k , b_k , $c_k \in \mathcal{F}'$.

To compute $H_{NP}^k(\mathbb{R}^4, \eta)$, $k \ge 1$, let us define a linear mapping $d' : \mathcal{F} \to \Omega_1'$ by

 $d'g = \frac{\partial g}{\partial x}dx + \frac{\partial g}{\partial y}dy + \frac{\partial g}{\partial z}dz.$

This operator d' is naturally extended to a linear mapping from Ω'_k to Ω'_{k+1} . Moreover we define $d'_f: \Omega'_k \to \Omega'_{k+1}$ by

$$d'_f(\alpha) = f d' \alpha - k d' f \wedge \alpha, \quad \alpha \in \Omega'_k.$$

Then $d'_f \circ d'_f = 0$, and we denote by $H^*_{d'_f}$ the cohomology space with respect to d'_f .

If we define $b: \chi'(\mathbb{R}^4) \to \Omega_2'$ by $b(X) = i(X) dx \wedge dy \wedge dz$, then we obtain that $\sharp_2(b(X)) = fX$ and that $\sharp_2(\{b(X), b(Y)\}) = [\sharp_2(b(X)), \sharp_2(b(Y))] = [fX, fY]$.

Following the similar method of P. Monnier [3], if $\phi: C^k(\Omega_2', \mathcal{F}) \to \Omega_k'$ is defined by

$$\phi(c^k)(X_1, \dots X_k) = c^k(b(X_1), \dots b(X_k)), X_1, \dots X_k \in \chi'(\mathbb{R}^4),$$

then ϕ is a linear isomorphism and we can prove the following.

Proposition 2.5. The following diagram is commutative.

$$C^{k}(\Omega'_{2}, \mathcal{F}) \xrightarrow{\phi} \Omega'_{k}$$

$$0 \downarrow \qquad \qquad \downarrow d'_{f}$$

$$C^{k+1}(\Omega'_{2}, \mathcal{F}) \xrightarrow{\phi} \Omega'_{k+1}$$

Hence $H_{\mathit{NP}}^*(\mathbb{R}^4, \eta) \cong H_{d'_f}^*$.

Proof. We prove only for the case k=1. For $c\in C^1(\Omega_2',\mathcal{F})$, put $\phi(c)=\alpha$. For any $X,\ Y\in\chi'(\mathbb{R}^4)$, we can directly get

$$\{b(X), b(Y)\} = f \cdot b([X, Y]) - (Xf) \cdot b(Y) + (Yf) \cdot b(X),$$

from the definition of the bracket $\{,\}$ on Ω'_2 . Using this equation, we have

$$\begin{split} \phi(\partial c)(X,\,Y) &= (\partial c)(b(X),\,b(\,Y)) \\ &= fX \cdot c(b(\,Y)) - fY \cdot c\,(b(X)) - c(\{b(X),\,b(\,Y)\}) \\ &= fX \cdot \alpha(\,Y) - fY \cdot \alpha(X) - c\,(f \cdot b\,([\,X,\,Y])) \\ &+ (Xf) \cdot b\,(Y) - (Yf) \cdot b\,(X)) \\ &= fX \cdot \alpha(\,Y) - fY \cdot \alpha(X) - f\alpha([\,X,\,Y]) \\ &- (Xf) \cdot \alpha(\,Y) + (\,Yf) \cdot \alpha(X) \\ &= f \cdot d'\alpha(X,\,Y) - (d'f \wedge \alpha)(X,\,Y) \\ &= (d'_f\alpha)(X,\,Y) = (d'_f \circ \phi(c))(X,\,Y). \end{split}$$

Thus $\phi \circ \partial = d'_f \circ \phi$.

2.2. **Computation of** $H^1_{NP}(\mathbb{R}^4,\eta)$. In this section, we compute $H^1_{NP}(\mathbb{R}^4,\eta)$. In order to do this, we have only to compute $H^*_{d_f'}$ by Proposition 2.5. The space of 1-coboundaries, which is denoted by B_1' , is the set of 1-forms fd'g, $g \in \mathcal{F}$. Let Z_1' be the space of 1-cocycles. Then for $\alpha = A\,dx + B\,dy + C\,dz \in \Omega_1'$, α is an element of Z_1' if and only if $fd'\alpha = d'f \wedge \alpha$. This equation is equivalent to the following three equations.

(2)
$$\begin{cases} f \cdot \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) = 2xB - 2yA, \\ f \cdot \left(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z}\right) = 2yC - 2zB, \\ f \cdot \left(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial x}\right) = 2zA - 2xC. \end{cases}$$

Note that u-formal Taylor expansion of α is written as $\bar{\alpha} = \alpha_0 + u\alpha_1 + u^2\alpha_2 + \cdots$, where $\alpha_p = a_p dx + b_p dy + c_p dz$, a_p , b_p , $c_p \in \mathcal{F}'$. And three equations (2) have the following formal expression.

(3)
$$\begin{cases} f \cdot \left(\frac{\partial \overline{B}}{\partial x} - \frac{\partial \overline{A}}{\partial y} \right) = 2x\overline{B} - 2y\overline{A}, \\ f \cdot \left(\frac{\partial \overline{C}}{\partial y} - \frac{\partial \overline{B}}{\partial z} \right) = 2y\overline{C} - 2z\overline{B}, \\ f \cdot \left(\frac{\partial \overline{A}}{\partial z} - \frac{\partial \overline{C}}{\partial x} \right) = 2z\overline{A} - 2x\overline{C}. \end{cases}$$

Comparing constant terms of u in the both sides of (3), we have

$$\begin{cases}
f' \cdot \left(\frac{\partial b_0}{\partial x} - \frac{\partial a_0}{\partial y}\right) = 2xb_0 - 2ya_0, \\
f' \cdot \left(\frac{\partial c_0}{\partial y} - \frac{\partial b_0}{\partial z}\right) = 2yc_0 - 2zb_0, \\
f' \cdot \left(\frac{\partial a_0}{\partial z} - \frac{\partial c_0}{\partial x}\right) = 2za_0 - 2xc_0.
\end{cases}$$

These three equations (4) essentially appeared in computing $H^1_{NP}(\mathbb{R}^3, \eta' = f' \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z})$. By Proposition 2.4, $H^1_{NP}(\mathbb{R}^3, \eta')$ is isomorphic to \mathbb{R} . The generator of $H^1_{NP}(\mathbb{R}^3, \eta')$ is df' and this means that there exist a real number k_0 and a function $g_0 \in \mathcal{F}'$ such that

(5)
$$\begin{cases} a_0 = k_0 \cdot 2x + f' \cdot \frac{\partial g_0}{\partial x}, \\ b_0 = k_0 \cdot 2y + f' \cdot \frac{\partial g_0}{\partial y}, \\ c_0 = k_0 \cdot 2z + f' \cdot \frac{\partial g_0}{\partial z}. \end{cases}$$

Since $\alpha_0=a_0dx+b_0dy+c_0dz$, we obtain that $\alpha_0=k_0df'+f'dg_0$. Similarly if we compare the coefficients of u in the both sides of (3), we can get $\alpha_1=k_1df'+f'dg_1$, where $k_1\in\mathbb{R}$ and $g_1\in\mathcal{F}'$. But if we compare the coefficients of u^2 in the both sides of (3), the situation is slightly different. In fact, we have

$$\begin{cases} f' \cdot \left(\frac{\partial b_2}{\partial x} - \frac{\partial a_2}{\partial y} \right) + \left(\frac{\partial b_0}{\partial x} - \frac{\partial a_0}{\partial y} \right) = 2xb_2 - 2ya_2, \\ f' \cdot \left(\frac{\partial c_2}{\partial y} - \frac{\partial b_2}{\partial z} \right) + \left(\frac{\partial c_0}{\partial y} - \frac{\partial b_0}{\partial z} \right) = 2yc_2 - 2zb_2, \\ f' \cdot \left(\frac{\partial a_2}{\partial z} - \frac{\partial c_2}{\partial x} \right) + \left(\frac{\partial a_0}{\partial z} - \frac{\partial c_0}{\partial x} \right) = 2za_2 - 2xc_2. \end{cases}$$

— 6 —

These equations (6) can be rewritten as follows.

$$\begin{cases}
f'\left(\frac{\partial\left(b_{2} - \frac{\partial g_{0}}{\partial y}\right)}{\partial x} - \frac{\partial\left(a_{2} - \frac{\partial g_{0}}{\partial x}\right)}{\partial y}\right) = 2x\left(b_{2} - \frac{\partial g_{0}}{\partial y}\right) - 2y\left(a_{2} - \frac{\partial g_{0}}{\partial x}\right), \\
f'\left(\frac{\partial\left(c_{2} - \frac{\partial g_{0}}{\partial z}\right)}{\partial y} - \frac{\partial\left(b_{2} - \frac{\partial g_{0}}{\partial y}\right)}{\partial z}\right) = 2y\left(c_{2} - \frac{\partial g_{0}}{\partial z}\right) - 2z\left(b_{2} - \frac{\partial g_{0}}{\partial y}\right), \\
f'\left(\frac{\partial\left(a_{2} - \frac{\partial g_{0}}{\partial x}\right)}{\partial z} - \frac{\partial\left(c_{2} - \frac{\partial g_{0}}{\partial z}\right)}{\partial x}\right) = 2z\left(a_{2} - \frac{\partial g_{0}}{\partial x}\right) - 2x\left(c_{2} - \frac{\partial g_{0}}{\partial z}\right).
\end{cases}$$

Thus we can apply Proposition 2.4 to (7), and we have that there exist a real number k_2 and $g_2 \in \mathcal{F}'$ such that

(8)
$$\begin{cases} a_2 - \frac{\partial g_0}{\partial x} = k_2 \cdot 2x + f' \frac{\partial g_2}{\partial x}, \\ b_2 - \frac{\partial g_0}{\partial y} = k_2 \cdot 2y + f' \frac{\partial g_2}{\partial y}, \\ c_2 - \frac{\partial g_0}{\partial z} = k_2 \cdot 2z + f' \frac{\partial g_2}{\partial z}. \end{cases}$$

Hence $\alpha_2=k_2df'+f'dg_2+dg_0$. By the same methods, we know that each α_p , $(p \geq 3)$ has the form $\alpha_p=k_pdf'+f'dg_p+dg_{p-2}$, where $k_p\in\mathbb{R}$ and g_{p-2} , $g_p\in\mathcal{F}'$. These mean that $\bar{\alpha}$ has the following expression. Note that df'=d'f and that $f'+u^2=f$.

$$\bar{\alpha} = (k_0 + k_1 u + k_2 u^2 + \cdots) d'f + f \cdot d'(g_0 + ug_1 + u^2g_2 + \cdots).$$

To obtain the final result, we need the following lemma, which is a generalization of E. Borel theorem. This will be proved in the analogous way as K. Abe and K. Fukui, Lemma 4.4 [1]. (See also R. Narasimhan [5], §1.5.2 and §1.5.3.) We put $\vec{r}=(x,y,z,u)$ and $|\vec{r}|=\sqrt{x^2+y^2+z^2+u^2}$. Then a function $F(\vec{r})\in C^\infty(\mathbb{R}^4)$ is said to be m-flat as a function of u at (x,y,z,0) if $\frac{\partial^\alpha}{\partial u^\alpha}F(x,y,z,0)=0$ for $\alpha\leq m$.

Lemma 2.6. For each integer $p \ge 0$, let $c_p(x, y, z) \in C^{\infty}(\mathbb{R}^3)$. Then there exists $G(\vec{r}) \in C^{\infty}(\mathbb{R}^4)$ such that the partial derivatives with respect to the last variable of G at any point $(x, y, z, 0) \in \mathbb{R}^4$ are

$$\frac{\partial^p G}{\partial u^p}(x, y, z, 0) = p! c_p(x, y, z) \quad p \ge 0.$$

Proof. Let $T_m(\vec{r}) = \sum_{p=0}^m c_p(x, y, z) u^p$ for $\vec{r} \in \mathbb{R}^4$. Let $H(\vec{r}) \in C^{\infty}(\mathbb{R}^4)$ such that $H(\vec{r}) = 0$ for $|\vec{r}| \le 1/2$, $H(\vec{r}) = 1$ for $|\vec{r}| \ge 1$ and $H(\vec{r}) \ge 0$ for any $\vec{r} \in \mathbb{R}^4$. For a positive number δ , put

$$g_{\boldsymbol{\delta}}(\vec{r}) = H\!\left(\frac{\vec{r}}{\boldsymbol{\delta}}\right) \left(\, T_{m+1}(\vec{r}) - T_m(\vec{r})\,\right).$$

Clearly $g_{\delta} \in C^{\infty}(\mathbb{R}^4)$ and vanishes near 0. Moreover $T_{m+1} - T_m$ is m-flat as a function of u at any point (x, y, z, 0). Hence as in the proof of Lemma 1.5.2 [5], there exists a positive number δ_m such that

$$\sum_{p=0}^m \frac{1}{p!} \left| \frac{\partial^p}{\partial u^p} (g_{\delta_m} - (T_{m+1} - T_m))(\vec{r}) \right| < 2^{-m} \; .$$

Put $g_m = g_{\delta_m}$. If we define

$$G = T_0 + \sum_{m=0}^{\infty} (T_{m+1} - T_m - g_m),$$

then as in the proof of Lemma 1.5.3 [5], we get that the function G is the desired function.

By Lemma 2.6, we obtain that there exist a C^{∞} -function k(u) and a C^{∞} -function g(x,y,z,u) such that $\overline{k(u)}=k_0+k_1u+k_2u^2+\cdots$, and $\overline{g(x,y,z,u)}=g_0+ug_1+u^2g_2+\cdots$. Put $\alpha'=k(u)d'f+fd'g$, and put $\alpha-\alpha'=\alpha_f$. Then α_f is a 1-cocycle and it satisfies $\overline{\alpha_f}=0$ (u-flat 1-form). Let $k_1(u)$ be a flat function of one variable u. Then $(\alpha_1-k_1(u)d'f)/f$ is a well-defined 1-form on \mathbb{R}^4 , and it satisfies

$$d'\left(\frac{\alpha_f - k_1(u)d'f}{f}\right) = \frac{1}{f^2}\left(fd'\alpha_f - d'f \wedge (\alpha_f - k_1(u)d'f)\right) = 0.$$

Hence, as is easily seen, there exists a flat function $\tilde{g}(x, y, z, u)$ such that $(\alpha_f - k_1(u)d'f)/f = d'\tilde{g}$. And we obtain that $\alpha \in Z_1'$ has the following form:

$$\alpha = \alpha_f + \alpha' = (k(u) + k_1(u))d'f + fd'(g + \tilde{g}).$$

 α is, by definition, cohomologous to $(k(u) + k_1(u))d'f$. Moreover l(u)d'f is contained in B'_1 if and only if l(u) is a flat function at u = 0. In fact, note that in this case l(u) log f is a C^{∞} -function and it holds that $l(u)d'f = fd'(l(u)\log f) \in B'_1$. Thus we obtain that $H^1_{NP}(\mathbb{R}^4, \eta)$ is isomorphic to $\mathbb{R}[[u]]$, which is the

120 - 8 -

space of formal power series of one variable u.

2.3. Computation of $H^2_{NP}(\mathbb{R}^4,\eta)$. We will compute $H^2_{NP}(\mathbb{R}^4,\eta)$. By Proposition 2.5, we will compute $H^2_{d'_f}$. Every computation proceeds in the analogous way as the case of $H^1_{d'_f}$. The space of 2-coboundaries B'_2 is, by definition, the set of 2-forms $d'_f \gamma = f d' \gamma - d' f \wedge \gamma$, $\gamma \in \Omega'_1$. Let Z'_2 be the space of 2-cocycles. Then for $\beta = A \, dy \wedge dz + B \, dz \wedge dx + C \, dx \wedge dy \in \Omega'_2$, β is an element of Z'_2 if and only if $f d' \beta = 2 \, d' f \wedge \beta$. This is equivalent to

$$(9) \hspace{3cm} f\cdot \left(\frac{\partial A}{\partial x}+\frac{\partial B}{\partial y}+\frac{\partial C}{\partial z}\right)=4(xA+yB+zC).$$

u-formal Taylor expansion (with respect to *u*) of β is written as $\bar{\beta} = \beta_0 + u\beta_1 + u^2\beta_2 + \cdots$, where $\beta_p = a_p dy \wedge dz + b_p dz \wedge dx + c_p dx \wedge dy$, a_p , b_p , $c_p \in \mathcal{F}'$. Then the equation (9) has the following *u*-formal Taylor expansion.

(10)
$$f \cdot \left(\frac{\partial \overline{A}}{\partial x} + \frac{\partial \overline{B}}{\partial y} + \frac{\partial \overline{C}}{\partial z} \right) = 4(x\overline{A} + y\overline{B} + z\overline{C}).$$

Comparing constant terms with respect to u in the both sides of (10), we have

(11)
$$f' \cdot \left(\frac{\partial a_0}{\partial x} + \frac{\partial b_0}{\partial y} + \frac{\partial c_0}{\partial z} \right) = 4(xa_0 + yb_0 + zc_0).$$

This is equivalent to $d_{f'}\beta_0=0$ for $\beta_0=a_0dy\wedge dz+b_0dz\wedge dx+c_0dx\wedge dy$. Recall that $H^2_{NP}(\mathbb{R}^3,\eta')=0$ by Proposition 2.4. In other words, if $d_{f'}\beta_0=0$, then β_0 must be a coboundary. This means that we can find a 1-form α_0 such that $\beta_0=f'd\alpha_0-df'\wedge\alpha_0$.

Comparing the coefficients of u in the both sides of (10), we can also find a 1-form α_1 such that $\beta_1 = f' d\alpha_1 - df' \wedge \alpha_1$. Moreover if $p \geq 2$ we can find p-form α_p such that $\beta_p = f' d\alpha_p - d' f \wedge \alpha_p + d\alpha_{p-2}$. u-formal Taylor expansion of β is as follows.

$$\begin{split} \bar{\beta} &= \sum_{p=0}^{\infty} u^p \beta_p \\ &= \sum_{p=0}^{\infty} u^p (f' d\alpha_p - d' f \wedge \alpha_p) + \sum_{p=0}^{\infty} u^{p+2} d\alpha_p \\ &= \sum_{p=0}^{\infty} u^p (f' d\alpha_p - d f' \wedge \alpha_p + u^2 d\alpha_p) \\ &= \sum_{p=0}^{\infty} u^p (f d\alpha_p - d' f \wedge \alpha_p) \end{split}$$

$$=\!fd'\!\left(\sum_{p=0}^\infty u^p\alpha_p\right)\!-d'\!f\wedge\!\left(\sum_{p=0}^\infty u^p\alpha_p\right)\!.$$

Put $\hat{\alpha} = \sum_{p=0}^{\infty} u^p \alpha_p$. Then $\bar{\beta} = fd'\hat{\alpha} - d'f \wedge \hat{\alpha}$. By Lemma 2.6, there exists a 1-form $\alpha' \in \Omega'_1$ such that $\bar{\alpha}' = \hat{\alpha}$. Put $\beta' = fd'\alpha' - d'f \wedge \alpha'$. Then $\bar{\beta} = \bar{\beta}'$ and hence if we put $\tilde{\beta} = \beta - \beta'$, then $\tilde{\beta}$ is a flat 2-form of Ω'_2 . Moreover it is easy to see that $fd'\tilde{\beta} = 2d'f \wedge \tilde{\beta}$, which means $\tilde{\beta} \in Z'_2$. Then by the same method as the proof of $H^2_{f'} = 0$ (C^{∞} -case), we can prove that there exists a flat 1-form α_2 such that $\tilde{\beta} = fd'\alpha_2 - d'f \wedge \alpha_2$. Hence β has the following form:

$$\beta = \beta' + \tilde{\beta} = fd'(\alpha' + \alpha_2) - d'f \wedge (\alpha' + \alpha_2),$$

and thus $\beta \in B_2'$. Hence we get $H^2_{NP}(\mathbb{R}^4, \eta) = 0$.

2.4. **Computation of** $H_{NP}^3(\mathbb{R}^4, \eta)$. Let Z_3' be the space of 3-cocycles. Since Ω_4' = 0, it holds that $Z_3' = \Omega_3'$. Hence Z_3' is isomorphic to \mathcal{F} . Let B_3' be the space of 3-coboundaries. Then every element of B_3' is written as

$$\begin{split} d_f'\beta &= f d'\beta - 2\, d'f \wedge \beta \\ &= \left\{ f \Big(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z} \, \Big) - 4(xA + yB + zC) \right\} dx \wedge dy \wedge dz, \end{split}$$

where $\beta = Ady \wedge dz + Bdz \wedge dx + Cdx \wedge dy$ is an arbitrary element of Ω'_2 .

Put $\mathcal{B} = \{ f(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}) - 4(xA + yB + zC) \mid A, B, C \in \mathcal{F} \}$. Then, by Proposition 2.5, $H_{NP}^3(\mathbb{R}^4, \eta)$ is isomorphic to \mathcal{F}/\mathcal{B} .

Lemma 2.7. Put $\mathcal{I} = \{h \in \mathcal{F} \mid \frac{\partial^p h}{\partial u^p} (x, y, z, 0) = 0, p \ge 0\}$. i.e., each element h of \mathcal{I} is u-flat. Then $\mathcal{I} \subset \mathcal{B}$.

Proof. For $h \in \mathcal{I}$, it is clear that h/f^3 is an element of \mathcal{F} . Put $A = f^2 \int \frac{h}{f^3} \ dx$, B = 0 and C = 0. Then we have

$$f\Big(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}\Big) - 4(xA + yB + zC) = h.$$

Hence $h \in \mathcal{B}$.

Put $\hat{F} = \{\overline{A} \mid A \in \mathcal{F}\}$ and $\hat{B} = \{\overline{A} \mid A \in \mathcal{B}\}$. We also denote by \mathcal{F}_0' the subspace of functions $g(x, y, z) \in \mathcal{F}'$ with g(0, 0, 0) = 0.

Proposition 2.8. $\hat{F}/\hat{B} \cong \mathbb{R}[[u]].$

Proof. For any element $g = f(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}) - 4(xA + yB + zC) \in \mathcal{B}$, its u-formal Taylor expansion is

$$\begin{split} \hat{B} \ni \bar{g} &= f \Big(\frac{\partial \overline{A}}{\partial x} + \frac{\partial \overline{B}}{\partial y} + \frac{\partial \overline{C}}{\partial z} \Big) - 4(x\overline{A} + y\overline{B} + z\overline{C}) \\ &= \sum_{p=0}^{\infty} \Big[u^p \Big\{ f' \Big(\frac{\partial a_p}{\partial x} + \frac{\partial b_p}{\partial y} + \frac{\partial c_p}{\partial z} \Big) - 4(xa_p + yb_p + zc_p) \Big\} \\ &+ u^{p+2} \Big(\frac{\partial a_p}{\partial x} + \frac{\partial b_p}{\partial y} + \frac{\partial c_p}{\partial z} \Big) \Big]. \end{split}$$

Put $g_p = f'(\frac{\partial a_p}{\partial x} + \frac{\partial b_p}{\partial y} + \frac{\partial c_p}{\partial z}) - 4(xa_p + yb_p + zc_p)$ and $h_p = \frac{\partial a_p}{\partial x} + \frac{\partial b_p}{\partial y} + \frac{\partial c_p}{\partial z}$ for nonnegative integer p. Then every $\bar{g} \in \hat{B}$ has the following expression.

$$\bar{g} = (g_0 + u^2 h_0) + u(g_1 + u^2 h_1) + \dots + u^p (g_p + u^2 h_p) + \dots$$

First recall that $H^3_{NP}(\mathbb{R}^3, \eta') \cong \mathbb{R}$ by Proposition 2.4. Hence for any non-negative integer p, it holds that

$$\{g_p \mid a_p, b_p, c_p \in \mathcal{F}'\} = \mathcal{F}'_0.$$

If we put $W_p = \{g_p + u^2 h_p \mid a_p, b_p, c_p \in \mathcal{F}'\}$, then \bar{g} is contained in $W_0 + uW_1 + \cdots + u^pW_p + \cdots$. Note that h_p is not completely determined by g_p . To show this precisely, let us consider the following linear partial differential equation with three unknown functions $a, b, c \in \mathcal{F}'$.

$$(*) \qquad f'\Big(\frac{\partial a}{\partial x}+\frac{\partial b}{\partial y}+\frac{\partial c}{\partial z}\Big)-4(xa+yb+zc)=0\,.$$

We define a subspace \mathcal{F}_0'' of \mathcal{F}' by

$$\mathcal{F}_0'' = \left\{ \frac{\partial a}{\partial x} + \frac{\partial b}{\partial y} + \frac{\partial c}{\partial z} \mid \text{a triplet } (a, b, c) \text{ is a solution of } (*) \right\}.$$

Since (a, b, c) is a solution of the differential equation (*), there exist three functions $A, B, C \in \mathcal{F}'$ such that

(12)
$$\begin{cases} a = f'(Cy - Bz) + 2(zB - yC), \\ b = f'(Az - Cx) + 2(xC - zA), \\ c = f'(Bx - Ay) + 2(yA - xB). \end{cases}$$

Recall that this fact is equivalent to $H_{f'}^2=0$. Put $h=\frac{\partial a}{\partial x}+\frac{\partial b}{\partial y}+\frac{\partial c}{\partial z}$. If h is an

element of \mathcal{F}''_0 , then it is clear that h vanishes at the origin and hence $h \in \mathcal{F}'_0$. Thus \mathcal{F}_0'' becomes a subspace of \mathcal{F}_0' .

Let

$$\begin{split} g_p &= f' \bigg(\frac{\partial a_p}{\partial x} + \frac{\partial b_p}{\partial y} + \frac{\partial c_p}{\partial z} \bigg) - 4(xa_p + yb_p + zc_p) \\ &= f' \bigg(\frac{\partial a_p'}{\partial x} + \frac{\partial b_p'}{\partial y} + \frac{\partial c_p'}{\partial z} \bigg) - 4(xa_p' + yb_p' + zc_p') \end{split}$$

for two triplets (a_p, b_p, c_p) and (a'_p, b'_p, c'_p) . Then we have

$$\begin{split} f'\Big(\frac{\partial \left(a_p-a_p'\right)}{\partial x}+\frac{\partial \left(b_p-b_p'\right)}{\partial y}+\frac{\partial \left(c_p-c_p'\right)}{\partial z}\Big)\\ &-4\{x(a_p-a_p')+y(b_p-b_p')+z(c_p-c_p')\}=0\,. \end{split}$$

Hence

$$h_p - h_p' = \frac{\partial \left(a_p - a_p'\right)}{\partial x} + \frac{\partial \left(b_p - b_p'\right)}{\partial y} + \frac{\partial \left(c_p - c_p'\right)}{\partial z}$$

is an element of \mathcal{F}_0'' , where $h_p' = \frac{\partial a_p'}{\partial x} + \frac{\partial b_p'}{\partial y} + \frac{\partial c_p'}{\partial z}$. We denote by $[h_p]$ a coset of h_p . Namely $[h_p]$ is an element of $\mathcal{F}'/\mathcal{F}_0''$. Using this expression, we know that $[h_p]$ is uniquely determined by g_p . Since the set $\{g_0 + ug_1 + u^2g_2 + \cdots \mid g_k \in \mathcal{F}'_0\}$ spans $\mathbb{R}[[u]]\mathcal{F}'_0$, and since $u^p\mathcal{F}''_0$ is contained in $\mathbb{R}[[u]]\mathcal{F}'_0$, we can regard W_p as

$$W_p = \{g_p + u^2[h_p] \mid g_p \in \mathcal{F}'_0\}.$$

Let $\phi: W_p \longrightarrow \mathcal{F}'_0$ be a surjective linear mapping defined by $\phi(g_p + u^2[h_p]) =$ g_p . Then it is clear that $g_p = 0$ means $[h_p] = 0$. Hence ϕ is injective. Thus we obtain that $\hat{B} \cong \mathbb{R}[[u]]\mathcal{F}'_0$.

Since

$$\hat{F} = \mathcal{F}' + u\mathcal{F}' + u^2\mathcal{F}' + \cdots$$

$$= (\mathbb{R} + \mathcal{F}'_0) + u(\mathbb{R} + \mathcal{F}'_0) + u^2(\mathbb{R} + \mathcal{F}'_0) + \cdots$$

$$= \mathbb{R}[[u]] \oplus \mathbb{R}[[u]]\mathcal{F}'_0,$$

we obtain that $\hat{F}/\hat{B} \cong \mathbb{R}[[u]]$.

Let $T: \mathcal{F} \to \hat{F}$ be a linear mapping defined by $T(A) = \overline{A}$. For any $q \in T^{-2}(\hat{B})$, there exists $Q \in \hat{B}$ such that T(q) = Q. On the other hand, since

— 12 — 124

 $T(\mathcal{B}) = \hat{B}$, there exists $q_1 \in \mathcal{B}$ such that $T(q_1) = Q$. Hence $q - q_1 \in \mathcal{I}$. By Lemma 2.7, we have $q \in \mathcal{B}$, and hence $T^{-1}(\hat{B}) = \mathcal{B}$. Thus by Proposition 2.8,

$$\mathcal{F}/\mathcal{B} \cong \hat{F}/\hat{B} \cong \mathbb{R}[[u]].$$

Now we summarize the results obtained in this section.

Theorem 2.9. Let $\eta = (x^2 + y^2 + z^2 + u^2) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z}$ be a Nambu-Poisson tensor on $\mathbb{R}^4(x, y, z, u)$. Then

$$\begin{split} &H^0_{NP}(\mathbb{R}^4,\eta) \cong C^{\infty}(\mathbb{R}), \\ &H^1_{NP}(\mathbb{R}^4,\eta) \cong \mathbb{R}[[u]], \\ &H^2_{NP}(\mathbb{R}^4,\eta) = 0, \\ &H^3_{NP}(\mathbb{R}^4,\eta) \cong \mathbb{R}[[u]], \\ &H^k_{NP}(\mathbb{R}^4,\eta) = 0, \quad k \geq 4. \end{split}$$

References

- [1] K. Abe and K. Fukui, On the first homology of the group of diffeomorphisms of smooth orbifolds with isolated singularities, (preprint).
- [2] R. Ibáñez *et al*, Duality and modular class of a Nambu-Poisson structure, *J. Phys. A: Math. Gen.* **34**(2001) 3623–3650.
- [3] P. Monnier, Computations of Nambu-Poisson cohomologies, Int. J. Math. Math. Sci. 26(2001) 65–81.
- [4] N. Nakanishi, On Nambu-Poisson manifolds, Rev. Math. Phys. 10(1998) 499-510.
- [5] R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland Publishing Co. (1968).