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COHOMOLOGY OF QUADRATIC
NAMBU-POISSON TENSOR

by

Hajime Sato"” and Nobutada NakANIsH1®

1. INTRODUCTION

In the present paper, we compute Nambu-Poisson cohomology in the case
of quadratic Nambu-Poisson tensor. The notion of Nambu-Poisson cohomol-
ogy was first introduced by R. Ibanez et al [2]. Let us consider 7 = (z* + 1>
+2+ud) LA a% A4, which is a Nambu-Poisson tensor of order 3 defined
on R¥(z, y, % u). To compute Hyp(R*, 1), we will essentially use the results of
computations of HT-P(RS, n’), where n’ = (2% +y> + 2?) 6% A a% A ai .

2. ComputaTioN oF NamBu-Poisson CoHOMOLOGY

2.1. Notation and General Remarks. First of all we review an equivalent co-
homology to Nambu-Poisson cohomology, which is due to P. Monnier [3]. Let
M be an m-dimensional C**-manifold with a volume form Q. For h € C>(M),
we define the operator d, : QM) — Q¥ (M) by d,(a) =hda — kdh A . Tt is
easy to prove that d, o d, = 0. We denote by H;(M) the cohomology of this
complex. Let 7 be an element of I"(A™(TM)). Recall that such 7 becomes al-
ways a Nambu-Poisson tensor [4]. Then P. Monnier proved the following [3].
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Proposition 2.1. Ifwe put h=1X2, then Hx,(M, n) is isomorphic to H; (M).

It is easy to see that if g is a function on M which does not vanish on M,
then the cohomologies H (M) and H ,’Z(M ) are isomorphic.

Throughout this paper, we will use the following notations:

e F is the algebra of real-valued C* functions on R*(z, v, 2 w);

e F'is the algebra of real-valued C* functions on R*(z, y, 2);

e Y (R*) is the F-module of vector fields on R*;

(R 40 150 0D ,
.X(R)—{ ol +caz|A,B,Oef},

o f=22+y*+2>+u’

fl=m2_+_y2+22;

QO = the space of k-forms on R*;
={Adz+ Bdy+ Cdz| A, B, C< F};
={AdyAdz+ BdzN\dz+ CdzNdy| A, B, Ce Fl;
={AdzNdyNdz| A e F}.

If we choose w = dz A dy A dzas the volume form on R?, then we have f/ =
i,w. First we compute Hy,(R?, 1'), which is isomorphic to H} (R?) by Propo-
sition 2.1. In the formal category (i.e. all coefficients of differential forms are
formal power series), the following results were obtained by P. Monnier [3].

Proposition 2.2. In the formal category, H) =R, H; =R, H} = 0 and H} =~
R.

We want to compute H} in the C*-category, and we will show that Propo-
sition 2.2 still holds even in the C*-category. First it is clear that H} =~ R. R.
Ibafiez et al [2] proved independently of P. Monnier [3] that H}, > R. Hence it
only remains to compute H} and H}. To compute them, we use Proposition
2:2;

Let 3 be a 2-cocycle. Then by definition, [ satisfies f'd3 = 2df’ A 3. Denote
by [3] the formal Taylor expansion of 3 at the origin. Then by Proposition 2.2,
there exists a formal 1-form [a] such that [3] = f'd[a] — df’ A [a]. Hence we
can ﬁnd a 1-form a, whose formal Taylor expansion at the origin is [a]. Put 3’

f’da df' A ). Then (' is flat (i.e. [8'] = 0) and satisfies f'd3’ = 2df’
A ,8’ a is also flat and d(// ) f’3 (f'dp" — 2df" A B') = 0. Hence there exists
a flat 1-form & such that = 7= =da. Puta= 7: . Then o is a flat 1-form, and we
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get 8'=f"?da=f'da’ — df’ A . Finally we have
S=fdla+d)— df' A (a+d).

This means H; = 0.

Next let us compute H7. The space of 3-cocycles Z3, is clearly isomorphic
to F'. And the space of 3-coboundaries B7 is isomorphic to the following
space F;.

—1¢(24 9B L 9C) _ : ’
Fl_{f (&E +88, 6z) 4(zA+yB+zC),A,B,C€.7-'}

Lemma 2.3. Let T be the subspace of F' consisting of functions which are flat at
the origin. Then T C F.

Proof. For g € Z, put

A=(f')2/ T % B=0, T=0
('
Then f’ %+g—§+%)—4(zA+y3+zC)=q. Hence we have that g F,. O

Denote by F” (resp. F}) the formal algebra corresponding to F” (resp. F;).
Let T be a mapping from F’ to F’, where T'(h) is the formal Taylor expansion
of h at the origin. Let 7 : F' — F'/F, be the canonical projection, and put 7' =
7o T. Then Tisa surjective linear mapping and it is clear that ker 7= F, by
Lemma 2.3. Since F'/F; >R by Proposition 2.2, we get that

Hp= F IR F[R=R,
Thus we obtained the following proposition.
Proposition 2.4. In C™-category, it still holds that H) =R, H, ~R, Hz =0
and H} =

For the Nambu-Poisson tensor 7=fZ A 3% AL defined on R*, we know
that

12(2%) = {fX| X € X'(R")}.

£,(Q%) is denoted by g, which is isomorphic to O?/ker #,. Note also that
%/ker 1, is isomorphic to Q5. g is, of course, a Lie subalgebra of y(R*).
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Since H%»(R*, 1) = {g € F| Xg=0 for all X € g}, it is clear that H}»(R?,
1) = C*(R).

In computing Nambu-Poisson cohomology, we use Proposition 2.4. To do
this, we need the formal Taylor expansion of a function A € F with respect to
the variable u, which is denoted by A. In other words, three variables z, y and z
are regarded as parameters. And we say that A is the u-formal Taylor expansion
of A. This terminology will be also used for differential forms and vector fields.
Thus we can express A (similarly B and O) as follows.

A=ay+ua +1ta+ -,
(1) B =by+ubi+wby+ -,
C=co+uc,+1v*c, + -,
where ay, b, ¢, € F'.
To compute Hip(R*, 1), k> 1, let us define a linear mapping d’: F —
Q} by

d'g= ggdx+ggdy+ggdz

This operator d’ is naturally extended to a linear mapping from €] to €2;.,.
Moreover we define d}: Q} — ., by

Na)=fd'a —kd'f Na, a€ Q.
Then d} od} =0, and we denote by H:,'; the cohomology space with respect to
d}.

If we define b: Y/(R*) — Q) by b(X) = i(X)dz A dy A dz, then we obtain
that ,(b(X)) = fX and that £,({b(X), b(Y)}) = [£2(b(X)), £2(b(Y))] = [£X,
fYl.

Following the similar method of P. Monnier [3], if ¢ : CHY, F) — Qi is
defined by

B(c)( Xy, -+ Xp) = cH(b(Xy), -+ b(XR)), Xi, -+ X € X'(RY),

then ¢ is a linear isomorphism and we can prove the following.

Proposition 2.5. The following diagram is commutative.

[0}

Q. F) —

o) Lo

Ck‘l( é’ -7:) 7) Q;‘H
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Hence Hp(R*, ) =~ H;;.

Proof. We prove only for the case k= 1. For ¢ € C"(Q%, F), put ¢(c) = .
Forany X, Y € x/(R*), we can directly get

{b(X), a(Y)}=f-b([X, Y]) = (Xf) - o(Y) + (Y[) - b(X),
from the definition of the bracket {,} on Q5. Using this equation, we have

o(9c)(X, Y)=(0c)(b(X ) b(Y))

=fX-c(b(Y)) = fY-c(b(X)) —c({b(X), b(Y)})

ZfX-a(Y) fY a(X)—e(f-b([X YD
FAXL) bl ¥ )={ YT} - BLA))

=fX-a(Y) = fY a(X) — fa([X, Y])

P+ Y)+ Yf) - a(X)

=f-da(X, Y (d'fAa)(X, Y)

=(dja)(X, Y)=(d} 0 $(c))(X, Y).

Thus ¢o d=d} o ¢. O

2.2. Computation of H},(R*, 7). In this section, we compute H)p(R*, 7).
In order to do this, we have only to compute H, ;k; by Proposition 2.5. The space
of 1-coboundaries, which is denoted by B, is the set of 1-forms fd'g, g€ F. Let
Z} be the space of 1-cocycles. Then for a = Adz+ Bdy + Cdz € Qf, a is an
element of Z) if and only if fd'a =d'f A a. This equation is equivalent to the
following three equations.

(5

) =21zB—2yA,

) =2yC —22B,

S
\
Py
HE S 8l
|
SIS 88 S

) =22A —2zC.

Note that u-formal Taylor expansion of « is written as &= oo + ua; +
wa, + -+, where o, =q,dz+b,dy+c,dz, a,, b,, c, € F'. And three equa-

P> Up?
tions (2) have the following formal expression.



OB _0A\_, %
aC OB\ _, A -
3) f (a—y—g)_ZyC’—ZzB,
A 9C\_ , t
f (8z -5 )—ZzA—ZzC
Comparing constant terms of u in the both sides of (3), we have
ob, 0
7 (e~ ge) = 22t~ 2yar,
0 b
(4) f'-(a—‘;—a—;)zzyco—zwo,
0 0
f- ( G _ 83) ) = 22ay — 22Cp.

These three equations (4) essentially appeared in computing H),(R?, ' =
fla% /\6% /\% ). By Proposition 2.4, H)»(R?, n’) is isomorphic to R. The gen-
erator of H\p(R?, 1) is df’ and this means that there exist a real number %,
and a function g, € F’ such that

dg,
o 3 7 . 0
dg

o . ! . 0

9y
1. 1. 99
co=ho 22+ f o

Since o = agdz + body + codz, we obtain that oy =kodf’ + f'dgy. Similarly if
we compare the coefficients of  in the both sides of (3), we can get a; =k, df’
+ f'dg,, where k, € R and g, € F'. But if we compare the coefficients of u* in
the both sides of (3), the situation is slightly different. In fact, we have

/e (__5_‘;2) (%_%):szz—zyaz,
(6) f (%——%”z—’) (%’—%)zzycz—zzbz,
f- (%——%(2) (%a;—%):zzaz—ncz.
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These equations (6) can be rewritten as follows.

z a(z—%)_8(@—%’)):n(bz_%)_zy(aq_%),

ox dy

o { g 8(02—%)_5(@‘%)):23/(62_%)_22(62 999 ),

(o) o) . ey oom)

Thus we can apply Proposition 2.4 to (7), and we have that there exist a real
number k, and ¢, € F' such that

_% = i ; , 09
B =k 2x+f D7

_% o A 1892

(8) b, By =k - 2y+f By
_890 , 09,

L) == 20 0z

Hence o, =k, df’ + f'dg, + dgo. By the same methods, we know that each «,, (p
> 3) has the form o, =k,df' + f'dg,+ dg, », where k,€ R and g, ,, g,€ F'.
These mean that & has the following expression. Note that df’ = d'f and that f’
+u* =f.

a=(k+kutkw+--)df+f -d(go+ug+u’g+ ).

To obtain the final result, we need the following lemma, which is a generali-
zation of E. Borel theorem. This will be proved in the analogous way as K. Abe
and K. Fukui, Lemma 4.4 [1]. (See also R. Narasimhan [5], §1.5.2 and §1.5.3.)
We put 7= (z, 3 2 u) and |7_"| = \/xz +y? + 22 +u? . Then a function F(7)
€ C®(R?) is said to be m-flat as a function of u at (, y, 2, 0) if (;)uﬂ F(z y, 2 0)
=0 for a<m.

Lemma 2.6. For each integer p > 0, let c¢,(x, y, z) € C*(R’). Then there exists
G(7) € C(R*) such that the partial derivatives with respect to the last variable of
G at any point (z, y, 2, 0) € R* are
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p

gg(x’ y,Z 0) p!Cp(.T, y’ Z) pZO
Proof. Let T,,(F) =X,_oc,(x 3 2)w’ for 7 €R*. Let H(7') € C°(R*) such that
H(#)=0 for |#| <1/2, H(F)=1 for|#| >1and H(7)> 0 for any 7 € R*. For
a positive number 0, put

—

95 = H(F ) (T0a ()= T, 7).
Clearly g; € C*(R*) and vanishes near 0. Moreover 7,,., — T, is m-flat as a
function of w at any point (z, ¥, z 0). Hence as in the proof of Lemma 1.5.2 [5],
there exists a positive number 6, such that

1| & »
Z? ouP (gém - (Tm+1 - 7;”))(7‘)
p=0""

Put g,, = gs . If we define

o
G:%+Z(7;71+1_7:71_gm)’

m=0
then as in the proof of Lemma 1.5.3 [5], we get that the function G is the de-
sired function. O

m

<2

By Lemma 2.6, we obtain that there exist a C™°-function k(u) and a C>-
function ¢(z, 4, z u) such that m ko+kiu+kou*+ -+, and g(x, ¥, 2, u)
= go +ug +u’g,+ . Puta’=k 'f—i—fdg,andputa—o—af Then a;
is a 1-cocycle and it satisfies a; a; = 0 (u-ﬂat 1-form). Let k,(u) be a flat function
of one variable u. Then (o, — ky(u)d'f)/f is a well-defined 1-form on R*, and
it satisfies

d’( oy — Eky(w)d'f )
5
Hence, as is easily seen, there exists a flat function §(z, 3, 2 u) such that (a;—
)d'f)/f =d'G. And we obtain that a € Z1 has the following form:

f2 (fd'a;— d'f A (o —ky(u)d'f)) =

a=a,+a'=(k(u)+ki(w)d'f+fd'(g+§).

a is, by definition, cohomologous to (k(u) +k,(u))d'f. Moreover {(u)d'f is
contained in B if and only if [(u) is a flat functlon at u=0. In fact, note that
in this case I(u) log fisa C*- functlon and it holds that I(u)d'f = fd'(l(u) log
f) € B}. Thus we obtain that H},(R* ) is isomorphic to R[[u]], Wthh is the
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space of formal power series of one variable w.

2.3. Computation of H3,(R* 7). We will compute H3,(R* 7). By Proposi-
tion 2.5, we will compute H7,. Every computation proceeds in the analogous
way as the case of H },J The space of 2-coboundaries B} is, by definition, the set
of 2-forms d}y=fd'y —d’f N, v€Qj. Let Z) be the space of 2-cocycles.
Then for 3=Ady Adz+ Bdz ANdz+ Cdz Ndy € Qf, 3 is an element of Z5 if
and only if fd’8 =2d'f A 3. This is equivalent to

) f.(aA 0B 80)

=TT

u-formal Taylor expansion (with respect to w) of 3 is written as B=Bo+ub +
u?3, + -+, where B, = a,dy Ndz+b,dz Adz+ c,dr Ady, a,, b,, ¢, € F'. Then

=4(zA+yB+ 20).

p> Up> “p
the equation (9) has the following u-formal Taylor expansion.
OA OB OC\_, 7. .73, .7
(10) f ( 52 + 3y + 3, )—4(IA+yB+ 20).

Comparing constant terms with respect to « in the both sides of (10), we

have
(11) f’~(%-F%%—%):M'xamLybﬁ—zco).
This is equivalent to d;3 = 0 for By = apdy A dz + bydz N dz + codx A dy. Re-
call that H3,(R? n’) = 0 by Proposition 2.4. In other words, if d;/3, = 0, then
(3, must be a coboundary. This means that we can find a 1-form oy such that 3,
=flday — df' N ay.

Comparing the coefficients of u in the both sides of (10), we can also find a
1-form a; such that 8, = f'day — df’ A ;. Moreover if p > 2 we can find p-
form a, such that 3, = f'da, — d’f A o, + da,_,. u-formal Taylor expansion of
3 1s as follows.

=> wr(fda, —df Aoy)+ D urtida,

p=0 p=0

=> ur(fda, — df' A, + uday)

. iup(fdap —dfA a,)



—f (fj )~dh(§uﬁap).

Put & =377 va,. Then B fd'a — d'f A\ &. By Lemma 2.6, there exists a 1-
form o’ € Q} such that @’=@&. Put f'=fd'a’—d'’f Aa’. Then =" and
hence if we put 5=3 — (', then B is a flat 2-form of . Moreover it is easy to
see that fd'6 = 2d'f A (3, which means B e Z,. Then by the same method as the
proof of H = 0 (C>-case), we can prove that there exists a flat 1-form a, such
that = fd'a, — d'f A a,. Hence 3 has the following form:

B=p0 +B :fd/(a/ +az) — d/f/\ (@ + ),
and thus 3 € B5. Hence we get Hyp(R*, ) =

2.4. Computation of H3,(R* 7). Let Z} be the space of 3-cocycles. Since
= 0, it holds that Z5 = Q3. Hence Z4 is isomorphic to F. Let B} be the space
of 3-coboundaries. Then every element of B} is written as

B=fd'B—-2dfAB
0A 0B , oC
= [f(%Jra_y*_) —4(zA+yB+2C) | dzAdy A dz,
where 8 = Ady A\ dz + Bdz A dz+ Cdx A dy is an arbitrary element of Q5.
Put B = f(g;‘ +Z 33 + BC) 4(zA+yB+2C) | A,B,Ce F}. Then, by

Proposition 2.5, Hi\p(R n) is isomorphic to F/B.

Lemma 2.7. PutZT= {he f| (:L’, %20) =0, p > 0}. i.e., each element h of T
is u-flat. Then T C B.

Proof. For h€ Z, it is clear that h/f* is an element of F. Put A= fzf L iz, B=
0and C'= 0. Then we have
dA 9B  9C -~
f(%+—a?+5)—4(zA+yB+zC)—h
Hence he B. O

Put F = {A|A€ F}and B= {A| A € B}. We also denote by F} the sub-
space of functions g(z,y,z) € F' with ¢(0,0,0) =0
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Proposition 2.8. F/B ~ R[[u]].

Proof. For any element g= f(g—f-l—g—f -I—%—f)— 4(zA+yB+zC) € B, its u-

formal Taylor expansion is

B 5§=f(a—z‘+a—y+5z—)—4(1&4+y3+26')

—_—i [up{f/(%ix?_ < %L; e %_Czp) —4(za,+yb,+ zc,,)]
p=0

Oay , Ob; , O¢
p+2 P p P
+u (—ax + o+t )}
[é] d dep 0, Obp | Ocp
Put gp:f’(ai;—f-a—l;"vL%%) — 4(za,+yb,+2¢,) and h, = —i”—%—a—b’y%—%—cz’ for non-
negative integer p. Then every 7 € B has the following expression.

7= "(go+vho) + u(gy + 1) + -+ +w(g, + h,) + --.

First recall that H3p(R? n’) =R by Proposition 2.4. Hence for any non-
negative integer p, it holds that

{9,] @, by, ¢, EF'} =Fy.

If we put W,={g,+v’h,| a,b,,c, € F'}, then g is contained in W, +
uWy + -+ +u’W,+ ---. Note that h, is not completely determined by g,. To
show this precisely, let us consider the following linear partial differential equa-

tion with three unknown functions a, b, c € .

da Ob  Oc
"\ 3 - n ) —
(%) f(a$+8y+8z) 4(za+yb+2zc)=0.
We define a subspace F{§ of F' by
da . Ob Oc , . .
A oo Jdc
o [ 5 " dy T EP | atriplet (a, b, ¢) is a solution of (*)}‘

Since (@, b, ¢) is a solution of the differential equation (%), there exist three
functions A, B, C' € F' such that

a=f'(Cy— Bz)+2(zB—yC),
(12) b=f"(Az— Cz)+2(zC—2A),
c¢=f'(Bx— Ay) +2(yA — zB).

Recall that this fact is equivalent to H7 = 0. Put h= g—f_ +% + g—g If his an
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element of F{, then it is clear that h vanishes at the origin and hence h € Fy.
Thus F{§ becomes a subspace of F.

Let
f'(aap+%+%—czg) 4(za,+ yb,+ 2c,)
/ /
_f’(aap %ZZ + Cfgj )—4(xa;+ybﬁ,+zc})
for two triplets (a,, b,, c,) and (a b, c’). Then we have
p P p p P
d(ap a;,) a(bp—bp) 8(cp—cp)
/
f( ox * dy + 0z )
—4{z(a, —a;) +y(b,— bl) + 2(c, — ¢} )} =0.
Hence
h —h! = 8(ap_a;’)+a(bp_b;’)+6(CP_C.§))

¥ ox oy 0z

is an element of F{, where h/, = ()‘ZP S o5 dc”

We denote by [h,] a coset of h Namely [h ] is an element of '/ F{. Using
this expression, we know that [, ] is uniquely determined by g,. Since the set
{go +ugy +1u*g, + -+ | g, €Fb} spans R[[u]]F§, and since v’ F§ is contained
in R[[u]]F§, we can regard W, as

W,=1{g,+v*[h,]| g, €Fo}.

Let ¢ : W, — F be a surjective linear mapping defined by o(g, +*[h,]) =
g,- Then it is clear that g,= 0 means [h,]| = 0. Hence ¢ is injective. Thus we
obtain that B =~ ~ R{[u]]Fb.

Since
F=F +uF +@F +
=R+ Fp) +u®R+Fh)+*(R+Fh) +
=R[[u]] ®R[[u]]F?,
we obtain that F’/E ~ R[[u]]. O

Let T:F—F be a linear mapping deﬁned by T(A)=A. For any
qeT™ 2(B), there exists QGB such that T'(q¢) = @. On the other hand, since
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T(B) zé, there exists ¢; € B such that T(ql) = (). Hence ¢g— ¢, €Z. By
Lemma 2.7, we have g€ B3, and hence 77'(B )= B. Thus by Proposition 2.8,

F/B=F/B =R[[u]].
Now we summarize the results obtained in this section.

Theorem 2.9. Let n= (2* +y* +2* +u?) 7% A f% A (% be a Nambu-Poisson
tensor on R*(z, 3y, 2, u). Then
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