Projectability of Left Invariant Nambu-Poisson Tensors on a Lie Group

by

Nobutada NAKANISHI

Department of Mathematics, Gifu Keizai University, 5-50 Kitagata, Ogaki-city, Gifu, 503-8550, Japan E-mail address: nakanisi@gifu-keizai.ac.jp

Dedicated to the memory of Professor Genji JIMBO

ABSTRACT. We study projectability of left invariant Nambu-Poisson tensors (LINPT) on a Lie group, and investigate the conditions for given Nambu-Poisson tensors to be projectable. Moreover we show that if η is an LINPT on G, which is projectable on an irreducible Riemannian symmetric space G/K, then η has only two possibilities.

1. Introduction

A Nambu-Poisson manifold is defined to be a pair of a C^{∞} -manifold and a Nambu-Poisson tensor defined on it [3], [5]. A Nambu-Poisson tensor is, by definition, a skew-symmetric contravariant tensor field on a manifold such that the induced bracket operation satisfies the *fundamental identity*, which is a generalization of the usual Jacobi identity.

Let G be a connected Lie group with left invariant volume form Ω , and K a connected closed subgroup of G. For a left invariant Nambu-Poisson tensor η on G, $\omega = i(\eta)\Omega$ is called a *Nambu-Poisson form*. This form is clearly left invariant. A left invariant Nambu-Poisson tensor η on G is said to be *projectable* if its corresponding Nambu-Poisson form ω is, in a usual sense, projectable on a G-invariant form $\bar{\omega}$ on G/K. In this article, we study projectable left invariant

Nambu-Poisson tensors η on a Lie group G. For example we will show that if G/K is an irreducible Riemannian symmetric space, then η has only two possibilities.

2. Reviews of Nambu-Poisson Manifolds

In this section, we will review some useful results of geometry of Nambu-Poisson manifolds. Details are referred to [3], [4]. Let M be an m-dimensional C^{∞} -manifold, and $\mathcal F$ its algebra of real valued C^{∞} functions on M. We denote by $\Gamma(\Lambda^nTM)$ the space of global cross-sections $\eta:M\to\Lambda^nTM$. Then for each $\eta\in\Gamma(\Lambda^nTM)$, there corresponds the bracket defined by

$$\{f_1, ..., f_n\} = \eta (df_1, ..., df_n), f_1, ..., f_n \in \mathcal{F}.$$

This bracket operation is an n-linear skew-symmetric map from \mathcal{F}^n to \mathcal{F} which satisfies the Leibniz rule:

$$\{f_1, ..., f_{n-1}, g_1 \cdot g_2\} = \{f_1, ..., f_{n-1}, g_1\} \cdot g_2 + g_1 \cdot \{f_1, ..., f_{n-1}, g_2\},$$

for all $f_1, ..., f_{n-1}, g_1, g_2 \in \mathcal{F}$.

Let $A = \sum f_{i_1} \wedge \cdots \wedge f_{i_{n-1}}$, $f_{i_j} \in \mathcal{F}$. Since the bracket operation clearly satisfies the Leibniz rule, we can define a vector field X_A corresponding to A by the following equation:

$$X_A(g) = \sum \{f_{i_1}, ..., f_{i_{n-1}}, g\}, g \in \mathcal{F}.$$

Such a vector field is called a *Hamiltonian vector field*. The space of Hamiltonian vector fields is denoted by \mathcal{H} .

Definition 2.1. $\eta \in \Gamma(\Lambda^n TM)$ is called a Nambu-Poisson tensor of order n if it satisfies $\mathcal{L}(X_A)\eta = 0$ for all $X_A \in \mathcal{H}$, where \mathcal{L} is the Lie derivative. Then a Nambu-Poisson manifold is a pair (M, η) .

The above definition is clearly equivalent to the following *fundamental identity*:

$$\{f_1, \ldots, f_{n-1}, \{g_1, \ldots, g_n\}\} = \{ \{f_1, \ldots, f_{n-1}, g_1\}, g_2, \ldots, g_n\}$$

$$+ \{g_1, \{f_1, \ldots, f_{n-1}, g_2\}, g_3, \ldots, g_n\}$$

$$+ \cdots + \{g_1, \ldots, g_{n-1}, \{f_1, \ldots, f_{n-1}, g_n\}\}$$

_ 2 _

for all $f_1, ..., f_{n-1}, g_1, ..., g_n \in \mathcal{F}$.

Let $\eta(p) \neq 0$, $p \in M$. Then we say that η is *regular* at p. Now we can state the following local structure theorem for Nambu-Poisson tensors [2], [3].

Theorem 2.1. Let $\eta \in \Gamma(\Lambda^n TM)$, $n \geq 3$. If η is a Nambu-Poisson tensor of order n, then for any regular point p, there exists a coordinate neighborhood U with local coordinates $(x_1, ..., x_n, x_{n+1}, ..., x_m)$ around p such that

$$\eta = \frac{\partial}{\partial x_1} \wedge \dots \wedge \frac{\partial}{\partial x_n}$$

on U, and vice versa.

To prove the above theorem, the condition $n \ge 3$ is essential. So whenever we mention a Nambu-Poisson manifold, we always assume that the order of the Nambu-Poisson tensor is greater than or equal to 3.

Let (M, η) be a Nambu-Poisson manifold with volume form Ω , and $m \ge n$ ≥ 3 . Put $\omega = i(\eta)\Omega$, where the right hand side is the interior product of η and Ω . Hence ω is (m-n)-form. The following theorem gives a necessary and sufficient condition for η to be a Nambu-Poisson tensor. For the proof, see [4].

Theorem 2.2. Let $\eta \in \Gamma(\Lambda^n TM)$, Then η is a Nambu-Poisson tensor if and only if η satisfies the following two conditions around each regular point:

- (a) ω is (locally) decomposable, and
- (b) there exists a locally defined 1-form θ such that $d\omega = \theta \wedge \omega$.

Remark 2.1. It is clear that the above criterion for Nambu-Poisson tensors does not depend on the choice of volume form.

3. Left invariant Nambu-Poisson tensors on Lie groups

In this section, we consider left invariant Nambu-Poisson tensors (LINPT) on Lie groups. Let G be an m-dimensional connected Lie group, $m \geq 3$. Denote by $\mathfrak g$ the Lie algebra of left invariant vector fields on G. Using Theorem 2.1, we can easily obtain the following lemma [4].

Lemma 3.1. Let η be a non-zero LINPT of order $n \geq 3$ on a Lie group G. Then η is globally decomposable. Namely there exist n elements X_1, \ldots, X_n of $\mathfrak g$ such that η is written as $\eta = X_1 \wedge \cdots \wedge X_n$.

By the above lemma, any LINPT η of order n can be written as a decomposable element of $\Lambda^n \mathfrak{g}$.

If a Lie subalgebra $\mathfrak h$ of $\mathfrak g$ has a basis $\{X_1, ..., X_n\}$, $\mathfrak h$ is denoted by $\mathfrak h = < X_1, ..., X_n>$. The following theorem states that for every Lie subalgebra $\mathfrak h$, $n \ge 3$, there corresponds an LINPT of order dim $\mathfrak h$. (For the proof, see [4].)

Theorem 3.2. Let G be an m-dimensional Lie group.

(a) Let $\mathfrak{h}=<X_1, ..., X_n>$ be an n-dimensional Lie subalgebra of $\mathfrak{g}, n\geq 3$. For basis $\{X_1, ..., X_n\}$ of $\mathfrak{h},$ put $\eta=X_1\wedge \cdots \wedge X_n$. Then η is an LINPT of order n on G.

(b) Conversely given an LINPT $\eta = X_1 \wedge \cdots \wedge X_n \in \Lambda^n \mathfrak{g}$ on G, then $\mathfrak{h} = \langle X_1, \ldots, X_n \rangle$ is an n-dimensional Lie subalgebra of \mathfrak{g} .

If an LINPT η has two expressions: $\eta = X_1 \wedge \cdots \wedge X_n = Y_1 \wedge \cdots \wedge Y_n$, then we know that $\langle X_1, ..., X_n \rangle = \langle Y_1, ..., Y_n \rangle$. Thus we have

Corollary 3.3. There is a one to one correspondence up to constant multiple between the set of LINPTs of order n on G and the set of n-dimensional Lie subalgebras of \mathfrak{g} .

By Corollary 3.3, we know that there are many LINPTs on a Lie group. Hence, from now on, we shall consider LINPTs which can be projected down to some homogeneous space. Let η be an LINPT of order n and Ω a left invariant volume form on G. As in the previous section, put $\omega = i(\eta)\Omega$. Then ω is a left invariant (m-n)-form, which is called a left invariant Nambu-Poisson form (LINPF).

Let us fix our notations. Let G be an m-dimensional connected Lie group and K a k-dimensional connected closed subgroup of G. Denote by $\mathfrak g$ and $\mathfrak k$ the Lie algebras of G and K respectively. Let $\pi:G\longrightarrow G/K$ be the natural projection. The mapping $\bar\gamma\longrightarrow\pi^*\bar\gamma$ establishes a one to one correspondence between G-invariant p-forms $\bar\gamma$ on G/K and left invariant p-forms γ on G which satisfy

_ 4 _

242

Projectability of Left Invariant Nambu-Poisson Tensors on a Lie Group (NAKANISHI)

(1)
$$i(X)\gamma = 0$$
 for all $X \in \mathfrak{k}$,

(2)
$$R_a^* \gamma = \gamma \text{ for all } a \in K[1].$$

Such a p-form γ is said to be *projectable*. If a p-form γ satisfies only the condition (1), γ is said to be *semi-projectable*. If K is connected, the condition (2) is replaced by the following equivalent condition.

(2)'
$$\mathcal{L}(X)\gamma = 0 \text{ for all } X \in \mathfrak{k}.$$

Definition 3.1. An LINPT η of order n on G is said to be semi-projectable (resp. projectable) if the corresponding LINPF $\omega=i(\eta)\Omega$ is semi-projectable (resp. projectable) in the above sense.

Let Ω and Ω' be any left invariant volume forms. Then $\Omega'=c\Omega$ for some non-zero constant c. Hence the above definition does not depend on the choice of left invariant volume forms.

In the rest of this section, we mainly consider a (semi-)projectable LINPT on G. Let $\mathfrak{g} = \langle X_1, ..., X_k, X_{k+1}, ..., X_m \rangle$ and $\mathfrak{k} = \langle X_1, ..., X_k \rangle$. Recall that each X_i is a left invariant vector field on G.

Lemma 3.4. Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$, where \mathfrak{m} is a complementary subspace of \mathfrak{k} in \mathfrak{g} . Let η be a semi-projectable LINPT of order $l \geq 3$ on G. Then η has the following form:

$$\eta = X_1 \wedge \cdots \wedge X_k \wedge F_1 \wedge \cdots \wedge F_{l-k}$$

where $X_i \in \mathfrak{k}$ and $F_i \in \mathfrak{m}$.

Proof. Since η is semi-projectable, we have

$$0 = i(X)\omega = i(X)i(\eta)\Omega = i(\eta \wedge X)\Omega,$$

for $X \in \mathfrak{k}$. Hence $\eta \wedge X = 0$ for any $X \in \mathfrak{k}$, and η is written as $\eta = X_1 \wedge \cdots \wedge X_k \wedge A$, where $A \in \Lambda^{l-k}\mathfrak{m}$. Due to Lemma 3.1, η is globally decomposable. Thus by an easy consideration, A is also decomposable and we obtain that η is written as

$$\eta = X_1 \wedge \cdots \wedge X_k \wedge F_1 \wedge \cdots \wedge F_{l-k}$$
,

where $X_i \in \mathfrak{k}$ and $F_j \in \mathfrak{m}$.

243

Definition 3.2. An LINPT η on G is said to be trivial with respect to the natural projection $G \to G/K$ if η is equal to one of the following tensors up to constant multiple: $\eta = X_1 \wedge \cdots \wedge X_k$, or $\eta = X_1 \wedge \cdots \wedge X_k \wedge X_{k+1} \wedge \cdots \wedge X_m$.

Let $\Omega = \omega_1 \wedge \cdots \wedge \omega_m$ be a left invariant volume form on G, where $\{\omega_i\}$ is the dual basis of $\{X_i\}$. If $\eta = X_1 \wedge \cdots \wedge X_k \wedge X_{k+1} \wedge \cdots \wedge X_m$, then $\omega = i(\eta)\Omega$ = 1. Hence $d\omega = 0$. On the other hand, if $\eta = X_1 \wedge \cdots \wedge X_k$, then $\omega = i(\eta)\Omega$ = $\omega_{k+1} \wedge \cdots \wedge \omega_m$. In general, this (m-k)-form ω is not always closed. For example, let $\mathfrak{g} = \mathfrak{sl}(3,R) = \mathfrak{a} + \mathfrak{n} + \mathfrak{k}$ be the usual Iwasawa decomposition. Let A and A are closed Lie groups corresponding to \mathfrak{a} and \mathfrak{n} respectively. Then A and A are closed Lie subgroups of A0, Put $\mathfrak{h} = \mathfrak{a} + \mathfrak{n}$. Denote by A1 the connected Lie group corresponding to \mathfrak{h} 1. His diffeomorphic to $A \times A$ 2 and hence A2 is a closed subgroup of A3, A4. Let us consider the natural projection A4. We can find a basis A5. Then A8 is a closed subgroup of A8. Put A9 is a such that A9 is a closed subgroup of A9. Put A9 is a such that A9 is a closed subgroup of A9. Put A9 is a such that A9 is a closed subgroup of A9. Put A9 is a consider the natural projection A9. Then A9 is a closed subgroup of A9. Put A9 is a consider the natural projection A9. Then A9 is a closed subgroup of A9. Put A9 is a consider the natural projection A9. Then A9 is a closed subgroup of A9. Put A9 is a consider the natural projection A9. Then A9 is a closed subgroup of A9. Put A9 is a closed subgroup of A9. Put A9 is a closed subgroup of A9. Put A9 is a closed subgroup of A9 is a closed subgroup of A9. Let us consider the natural projection A9. We know that A9 is a closed subgroup of A9 is trivial but is not projectable.

Next let us study the case that G/K are irreducible Riemannian symmetric spaces. Let \mathfrak{g} be a semisimple Lie algebra with Cartan decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$. Put $\mathfrak{k}=<\!X_1,\ldots,X_k\!>$, $\mathfrak{m}=\{Y_1,\ldots,Y_q\}$, where $k+q=m=\dim G$. Let α_1,\ldots,α_k (resp. β_1,\ldots,β_q) be the dual basis of X_1,\ldots,X_k (resp. Y_1,\ldots,Y_q). Then $\Omega=\alpha_1\wedge\cdots\wedge\alpha_k\wedge\beta_1\wedge\cdots\wedge\beta_q$ is a left invariant volume form of G.

Theorem 3.5. Let η be a semi-projectable LINPT of order $n \geq 3$ on G. If G/K is an irreducible Riemannian symmetric space, then η is trivial.

Proof. By Lemma 3.4, we know that η can be written as $\eta = X_1 \wedge \cdots \wedge X_k \wedge F_1 \wedge \cdots \wedge F_{n-k}$, where $F_i \in \mathfrak{m}$. If n-k=0, we have done. Suppose that $n-k \geq 1$. Put $\mathfrak{m}' = \{F_1, \ldots, F_{n-k}\}$, which is a subspace of \mathfrak{m} . Recall that $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k}$ and $[\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}$. By Theorem 3.2, $\mathfrak{k} + \mathfrak{m}'$ is a Lie subalgebra of \mathfrak{g} . Hence $[\mathfrak{k}, \mathfrak{m}'] \subset \mathfrak{m}'$. Thus we obtain

$$[[\mathfrak{m},\mathfrak{m}],\mathfrak{m}']\subset [\mathfrak{k},\mathfrak{m}']\subset \mathfrak{m}'.$$

Since $[\mathfrak{m}, \mathfrak{m}]$ acts irreducibly on \mathfrak{m} , we have $\mathfrak{m}' = \mathfrak{m}$. This implies that η is trivial.

244 — 6 —

Remark 3.1. As is well-known, a G-invariant form $\bar{\omega}$ on a symmetric space G/K is always closed, and hence $\omega=\pi^*\bar{\omega}$ is also closed. Thus in this case, for a semi-projectable LINPT $\eta,\ \eta$ is projectable if and only if $d\omega=0$.

We give an example of non trivial LINPTs which are projectable on a *reducible* symmetric space. Put G = SO(4) and $K = SO(2) \times SO(2)$. Then G/K is a reducible symmetric space which is locally diffeomorphic to $S^2 \times S^2$. One can find a basis $\mathfrak{o}(4) = \langle X_1, ..., X_6 \rangle$ which satisfies:

$$\begin{split} [X_1,\,X_2] &= -X_4, \quad [X_1,\,X_3] = -X_5, \quad [X_1,\,X_4] = X_2, \\ [X_1,\,X_5] &= X_3, \quad [X_2,\,X_3] = -X_6, \quad [X_2,\,X_4] = -X_1, \\ [X_2,\,X_6] &= X_3, \quad [X_3,\,X_5] = -X_1, \quad [X_3,\,X_6] = -X_2, \\ [X_4,\,X_5] &= -X_6, \quad [X_4,\,X_6] = X_5, \quad [X_5,\,X_6] = -X_4, \\ [X_1,\,X_6] &= [X_2,\,X_5] = [X_3,\,X_4] = 0. \end{split}$$

With respect to this basis, $\mathfrak{o}(2) \times \mathfrak{o}(2) = \langle X_1, X_6 \rangle$. Let $\{\omega_1, ..., \omega_6\}$ be the dual basis. Then we can find three projectable LINPTs:

$$\begin{split} \eta_1 &= X_1 \wedge X_2 \wedge X_3 \wedge X_4 \wedge X_5 \wedge X_6, \\ \eta_2 &= X_1 \wedge (X_2 + X_5) \wedge (X_3 - X_4) \wedge X_6, \\ \eta_3 &= X_1 \wedge (X_3 + X_4) \wedge (X_2 - X_5) \wedge X_6. \end{split}$$

In our definitions, the order of Nambu-Poisson tensors is greater than 2. So $\eta_4 = X_1 \wedge X_6$ is not an LINPT but a regular Poisson tensor on SO(4). It is easy to see that η_2 and η_3 are non trivial projectable LINPTs. Put $\theta_i = i(\eta_i)\Omega$, where $\Omega = \omega_1 \wedge \cdots \wedge \omega_6$. Then we have $\theta_2 = (\omega_2 - \omega_5) \wedge (\omega_3 + \omega_4)$, and $\theta_3 = (\omega_3 - \omega_4) \wedge (\omega_2 + \omega_5)$. An easy computation shows that $d\theta_2 = d\theta_3 = 0$. Moreover θ_2 and θ_3 are cohomologous on SO(4). Since θ_2 and θ_3 are projectable 2-forms, they are considered to be the forms on $SO(4)/SO(2) \times SO(2)$. Since $\theta_2 - \theta_3 = d(2\omega_6)$ and ω_6 can not be considered as a form on G/K, they are *not* cohomologous as 2-forms on $SO(4)/SO(2) \times SO(2)$. And hence they become generators of $H^2(SO(4)/SO(2) \times SO(2))$.

Let us consider the case that G/K is not a symmetric space. For example, let G=U(n+1) and K=U(n). Then G/K is not a symmetric space but a (2n+1)-dimensional homogeneous space which is diffeomorphic to S^{2n+1} . The Lie algebra $\mathfrak{u}(n)$ of U(n) is contained in the Lie algebra $\mathfrak{u}(n+1)$ of U(n+1) in

the natural manner. Let $X_1, ..., X_{n^2}$ be a basis of $\mathfrak{u}(n)$. Define matrices $Y_{2i-1} = (a_{pq})$ and $Y_{2i} = (b_{pq})$ for $1 \le i \le n$ and $Y_{2n+1} = (c_{pq})$ of $\mathfrak{u}(n+1)$ by

$$a_{i,\,n+1}=1, \quad a_{n+1,\,i}=-1, \quad \text{otherwise 0},$$
 $b_{i,\,n+1}=\sqrt{-1}, \quad b_{n+1,\,i}=\sqrt{-1}, \quad \text{otherwise 0},$ $c_{n+1,\,n+1}=\sqrt{-1}, \quad \text{otherwise 0}.$

Then $\mathfrak{u}(n+1) = \langle X_1, ..., X_{n^2}, Y_1, ..., Y_{2n+1} \rangle$. Let $\{\alpha_1, ..., \alpha_{n^2}, \beta_1, ..., \beta_{2n+1}\}$ be its dual basis. Under these notations, define η by

$$\eta = X_1 \wedge \cdots \wedge X_{n^2} \wedge Y_{2n+1}.$$

Then $\langle X_1, ..., X_{n^2}, Y_{2n+1} \rangle$ is a Lie subalgebra of $\mathfrak{u}(n+1)$. With respect to the volume form $\Omega = \alpha_1 \wedge \cdots \wedge \alpha_{n^2} \wedge \beta_1 \wedge \cdots \wedge \beta_{2n+1}$, $\omega = i(\eta)\Omega = \beta_1 \wedge \cdots \wedge \beta_{2n}$ is a 2n-form which is projected down to G/K. Since $d\omega = 0$, we find that η is a nontrivial projectable LINPT.

Next let us consider the conditions for a left invariant Nambu-Poisson form (LINPF) ω to be a closed form. Let G be an m-dimensional connected Lie group with Lie algebra \mathfrak{g} , and K be a k-dimensional connected closed Lie subgroup of G with Lie subalgebra $\mathfrak{k} = < X_1, ..., X_k >$. With respect to the canonical projection $\pi: G \longrightarrow G/K$, we consider a projectable LINPT η of order $l(\geq k)$ on G. Then by Lemma 3.1, we know that η has the expression: $\eta = X_1 \wedge \cdots \wedge X_k \wedge X_{k+1} \wedge \cdots \wedge X_l$. (See also the proof of Lemma 3.4.) Adding (m-l) vector fields $X_{l+1}, ..., X_m$ to $X_1, ..., X_l$, we make a basis of \mathfrak{g} . Recall that each vector field X_i , $(1 \leq i \leq m)$ is left invariant. We denote the dual basis of $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$, and put $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$, and put $(X_1, ..., X_m)$ is given by $(X_1, ..., X_m)$ or $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$, and put $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$ and put $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$ and put $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$ and put $(X_1, ..., X_m)$ by $(X_1, ..., X_m)$ by (

Proposition 3.6. Let η be a semi-projectable LINPT of order l on G. Let $\langle X_1, ..., X_m \rangle$ be the basis of $\mathfrak g$ constructed from η as above, and let $\{C_{ij}^k\}$ be structure constants of $\mathfrak g$ corresponding to the basis $\langle X_1, ..., X_m \rangle$. If $\sum_{p=l+1}^m C_{rp}^p = 0$ for each $r, 1 \leq r \leq l$, then η is a projectable LINPT.

Proof. Since η is semi-projectable, η can be written as $\eta = X_1 \wedge \cdots \wedge X_k \wedge X_{k+1} \wedge \cdots \wedge X_l$. Then $\langle X_1, \ldots, X_k, X_{k+1}, \ldots, X_l \rangle$ is a Lie subalgebra of \mathfrak{g} , and we easily obtain

_ 8 _

Projectability of Left Invariant Nambu-Poisson Tensors on a Lie Group (NAKANISHI)

$$d\omega = -\sum_{r=1}^{l} \sum_{p=l+1}^{m} C_{rp}^{p} \, \omega_{r} \wedge \omega.$$

Thus the condition $\sum_{p=l+1}^m C_{rp}^p = 0$, $1 \le r \le l$ implies $d\omega = 0$. Then for any $X \in \mathfrak{k}$,

$$\mathcal{L}(X)\omega = i(X)d\omega + di(X)\omega = 0,$$

and hence η is projectable.

Let us apply Proposition 3.6 to the case that G is a connected unimodular Lie group. Under this condition, we have

Corollary 3.7. Let $\eta = X_1 \wedge \cdots \wedge X_l$ be a semi-projectable LINPT on a connected unimodular Lie group G. If the connected Lie subgroup L corresponding to the Lie algebra $\mathfrak{l} = < X_1, \ldots, X_l >$ is also unimodular, then the LINPF $\omega = i(\eta)\Omega$ is closed, and hence η is projectable.

Proof. Since G and L are unimodular, their structure constants satisfy $\sum_{\alpha=1}^m C_{i\alpha}^{\alpha} = 0$ for each $i, 1 \leq i \leq m$, and $\sum_{\beta=1}^l C_{j\beta}^{\beta} = 0$ for each $j, 1 \leq j \leq l$. Hence $\sum_{p=l+1}^m C_{rp}^p = 0$ for each $r, 1 \leq r \leq l$. Due to Proposition 3.6, this implies $d\omega = 0$, and η becomes projectable.

A typical example of Corollary 3.7 is the case that G=SO(n) (resp. U(n)) and K=SO(q) (resp. U(q)). Then G and K are unimodular Lie groups, and G/K is a Stiefel manifold. Let η be a semi-projectable LINPT on G whose corresponding Lie algebra induces a closed Lie subgroup L of G. Then $SO(q) \subset L \subset SO(n)$ (or $U(q) \subset L \subset U(n)$). Since L is a closed Lie subgroup of G, L is unimodular. Thus by Corollary 3.7, the LINPF $\omega=i(\eta)\Omega$ is closed and η is projectable.

REFERENCES

- [1] Chevalley C and Eilenberg S 1948 Cohomology theory of Lie groups and Lie algebras *Trans. Amer. Math. Soc.* 63 85–124
- [2] Gautheron P 1996 Some remarks concerning Nambu mechanics *Lett. Math. Phys.* 37 103–116

- [3] Nakanishi N 1998 On Nambu-Poissn manifolds Rev. Math. Phys. 10 499-511
- [4] ______, 2000 Nambu-Poisson tensors on Lie groups Banach Center Publications 51 243–249
- [5] Takhtajan L 1994 On foundation of the generalized Nambu mechanics Commun. Math. Phys. 160 295–315