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ABSTRACT. We study projectability of left invariant Nambu-Poisson
tensors (LINPT) on a Lie group, and investigate the conditions for
given Nambu-Poisson tensors to be projectable. Moreover we show
that if 77 is an LINPT on G, which is projectable on an irreducible Rie-
mannian symmetric space G/ K, then 7 has only two possibilities.

1. INTRODUCTION

A Nambu-Poisson manifold is defined to be a pair of a C*™*-manifold and a
Nambu-Poisson tensor defined on it [3], [5]. A Nambu-Poisson tensor is, by
definition, a skew-symmetric contravariant tensor field on a manifold such that
the induced bracket operation satisfies the fundamental identity, which is a gen-
eralization of the usual Jacobi identity.

Let G be a connected Lie group with left invariant volume form €, and X a
connected closed subgroup of G. For a left invariant Nambu-Poisson tensor n
on G, w = i(n) is called a Nambu-Poisson form. This form is clearly left in-
variant. A left invariant Nambu-Poisson tensor 77 on @ is said to be projectable
if its corresponding Nambu-Poisson form w is, in a usual sense, projectable on a
G-invariant form @ on G/K. In this article, we study projectable left invariant
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Nambu-Poisson tensors 77 on a Lie group G. For example we will show that
if G/K is an irreducible Riemannian symmetric space, then 7 has only two
possibilities.

2. ReEviEWS OF NAMBU-P0O1SSON MANIFOLDS

In this section, we will review some useful results of geometry of Nambu-
Poisson manifolds. Details are referred to [3], [4]. Let M be an m-dimensional
C>-manifold, and F its algebra of real valued C* functions on M. We denote
by I'(A"TM) the space of global cross-sections 77 : M — A"TM. Then for each
n € I'(A"TM), there corresponds the bracket defined by

{ e afilampldfi von'dhls  fis walREF:

This bracket operation is an n-linear skew-symmetric map from Ftto.F
which satisfies the Leibniz rule:

{fo oo facts 91° G2} = {fir or a1, g1} - g2+ g1+ s 05 fa15 G2}
forall fi, ..., fu-1, g1, g2 € F.
Let A=Sf, A - A f. . f,, € F. Since the bracket operation clearly satis-
fies the Leibniz rule, we can define a vector field X4 corresponding to A by the
following equation:

Xa(9) =2 Afir - finngh g€ F

Such a vector field is called a Hamiltonian vector field. The space of Hamilto-
nian vector fields is denoted by H.

Definition 2.1. 1 € I'(A"TM) is called a Nambu-Poisson tensor of order n if it
satisfies £(Xa)n = 0 for all X4 € H, where Lis the Lie derivative. Then a
Nambu-Poisson manifold is a pair (M, n).

The above definition is clearly equivalent to the following fundamental iden-
tity:
i oo a1 4910 o gt = {fs os frors 91h 92 -5 g}
+ 191 {fis o foo1 g2} 93, 05 gnd
o O {gl, dosy GR=15 {f], ...,fn—b gn}}
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forall’ firsndfcs g ghe
Letn(p) # 0, p € M. Then we say that 7 is regular at p. Now we can state
the following local structure theorem for Nambu-Poisson tensors [21, [3].

Theorem 2.1. Letn € I'(A"TM), n > 3. Ifn is a Nambu-Poisson tensor of or-
der n, then for any regular point p, there exists a coordinate neighborhood U with

local coordinates (z, ..., Tn, Tui1, ..., Tm) around p such that
0 0
77 —_——_—— /\ o
o oz,

on U, and vice versa.

To prove the above theorem, the condition n > 3 is essential. So whenever
we mention a Nambu-Poisson manifold, we always assume that the order of the
Nambu-Poisson tensor is greater than or equal to 3.

Let (M, 1) be a Nambu-Poisson manifold with volume form €2, and m >n
2 3. Putw = i(n)€2, where the right hand side is the interior product of 7 and
Q. Hence wis (m — n)-form. The following theorem gives a necessary and
sufficient condition for 7 to be a Nambu-Poisson tensor. For the proof, see [4].

Theorem 2.2. Letn € ['(A"TM), Then 1 is a Nambu-Poisson tensor if and only
if n satisfies the following two conditions around each regular point:

(a) wis (locally) decomposable, and

(b) there exists a locally defined 1-form 6 such that dw = 6 A w.

Remark 2.1. It is clear that the above criterion for Nambu-Poisson tensors does
not depend on the choice of volume form.

3. LEFT INVARIANT NAMBU-POISSON TENSORS
oN LiE GrouPs

In this section, we consider left invariant Nambu-Poisson tensors (LINPT) on
Lie groups. Let G be an m-dimensional connected Lie group, m > 3. Denote
by g the Lie algebra of left invariant vector fields on G. Using Theorem 2.1, we
can easily obtain the following lemma [4].
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Lemma 3.1. Let 1) be a non-zero LINPT of order n. > 3 on a Lie group G. Thenn
is globally decomposable. Namely there exist n elements X, ..., Xnof g such that
niswritten asn= X1 A -+ A Xa.

By the above lemma, any LINPT 7 of order n can be written as a decom-
posable element of A"g.

If a Lie subalgebra b of g has a basis {Xi, ..., Xu}, b is denoted by h =< Xi,
..., X,>. The following theorem states that for every Lie subalgebra b, n > 3,
there corresponds an LINPT of order dim . (For the proof, see [4].)

Theorem 3.2. Let G be an m-dimensional Lie group.
(a) Leth =<Xi, ..., X,> be an n-dimensional Lie subalgebra of g, n > 3.
For basis { X, ..., Xn} of b, putn= X1 A --- A Xy. Thennisan LINPT
of order non G.
(b) Conversely given an LINPT = Xi A -+ A Xn € A'g on G, then h =
<X, ..., X,> is an n-dimensional Lie subalgebra of g.

If an LINPT 7 has two expressions: n = Xi A - A Xa= Y1 A - A Ya,
then we know that < Xi, ..., Xa>=<¥1, ..., Ya>. Thus we have

Corollary 3.3. There is a one to one correspondence up to constant multiple be-
tween the set of LINPTs of order n.on G and the set of n-dimensional Lie subalge-
bras of g.

By Corollary 3.3, we know that there are many LINPTs on a Lie group.
Hence, from now on, we shall consider LINPTs which can be projected down
to some homogeneous space. Let 77be an LINPT of order nand € a left invari-
ant volume form on G. As in the previous section, put w = i(1)Q2. Thenwisa
left invariant (m —n)-form, which is called a left invariant Nambu-Poisson
form (LINPF).

Let us fix our notations. Let G be an m-dimensional connected Lie group
and K a k-dimensional connected closed subgroup of G. Denote by g and £
the Lie algebras of G and K respectively. Letm: G — G/K be the natural pro-
jection. The mapping 7— 7*4 establishes a one to one correspondence be-
tween G-invariant p-forms 5 on G/K and left invariant p-forms  on G which
satisfy
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(1) 1(X)y=0 forall Xe¢t,
(2) R¥y=+ forall ae K[1].

Such a p-form 7 is said to be projectable. If a p-form ~ satisfies only the
condition (1), v is said to be semi-projectable. If K is connected, the condition
(2) is replaced by the following equivalent condition.

) L(X)y=0 forall X e¢.

Definition 3.1. An LINPT 1 of order n on G is said to be semi-projectable (resp.
projectable) if the corresponding LINPF w = i(n)S is semi-projectable ( resp. pro-
jectable) in the above sense.

Let ©2 and Q' be any left invariant volume forms. Then €’ = ¢ for some
non-zero constant ¢. Hence the above definition does not depend on the choice
of left invariant volume forms.

In the rest of this section, we mainly consider a (semi-)projectable LINPT
on'G. Letg =<X,, ..., Xi, i1, ..., Xm>and B=<Xi; .... Xi>. Recall that
each X; is a left invariant vector field on G.

Lemma 3.4. Let g = € + m, where m is a complementary subspace ofting. Letn
be a semi-projectable LINPT of order 1> 3 on G. Then 1 has the following form:

e XN A X AT A oA Fow,

where X; € € and F; € m.

Proof. Since 7 is semi-projectable, we have
0=i(X)w=1i(X)i(nQ=1i(n AX)Q,

for X € €. Hence n A X =0 for any X € ¢, and 7 is written asn=Xi A A
X A A, where A € A'"*m. Due to Lemma 3.1, n is globally decomposable.
Thus by an easy consideration, 4 is also decomposable and we obtain that 7 is
written as

Nn=XiA---AXgAFL A A Fig,
where X; € tand F; € m. O
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Definition 3.2. An LINPT non G is said to be trivial with respect to the natural
projection G — G/K if n is equal to one of the following tensors up to constant
multiple:n= X1 A -+ A X, orn=Xa1 A --- A Xk A Xiri Ao AXm.

Let Q = wi A --- A wy, be a left invariant volume form on G, where {w;} is
the dual basis of {Xi}. Ifn= X1 A - A Xg A Xps1 A -+ A X, thenw = ()2
— 1. Hence dw = 0. On the other hand, if = Xi A -+ A Xi, then w = i(n)Q2
— W1 A -+ A wp. In general, this (m — k)-form w is not always closed. For ex-
ample, let g =s[(3, R) =a+n+ £ be the usual Iwasawa decomposition. Let
A and N be the connected Lie groups corresponding to a and n respectively.
Then A and N are closed Lie subgroups of SL(3, R). Puth = a + n. Denote by
H the connected Lie group corresponding to h. H is diffeomorphic to A x N
and hence H is a closed subgroup of SL(3, R). Let us consider the natural pro-
jection SL(3, R) — SL(3, R)/H. We can find a basis <X, ... Xs>=g such
that a =< X, Xo>and n =< X3, X4, Xs>. Putn=Xi A --- A X5. Thenw =
i(n)Q = ws A wr A ws with respect to the dual basis {ws, ..., ws} of { X, ..., Xs}.
We know that i(h)dw #0. Thus this LINPT 7 is trivial but is not projectable.

Next let us study the case that G/K are irreducible Riemannian symmetric
spaces. Let g be a semisimple Lie algebra with Cartan decomposition g = L
m. Putt=<Xy, ..., ;> m={Y4, ..., Y;}, where k+ ¢g=m = dim G. Let
ai, ..., ai (resp. By, ..., By) be the dual basis of Xis ooty (respy Yis s Vo)
Then Q=g A --- Aax A Bi A - A By is a left invariant volume form of G.

Theorem 3.5. Let 1) be a semi-projectable LINPT of order n > 3 on G. If G/Kis
an irreducible Riemannian symmetric space, then 1) is trivial.

Proof. By Lemma 3.4, we know that 7) can be written as 7 = XiA-- ANXe NP
A -+ A Fo_r, where Fi € m. If n — k = 0, we have done. Suppose that n —k
> 1. Putm/ = {Fy, ..., F,_¢}, which is a subspace of m. Recall that [m, m] C €
and [, m] C m. By Theorem 3.2, £ + m’ is a Lie subalgebra of g. Hence [, m/]
C m’. Thus we obtain

[[m, m],m'] C [, m'] Cw'.

Since [m, m] acts irreducibly on m, we have m’ = m. This implies that 7 is
trivial. [l
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Remark 3.1. As is well-known, a G-invariant form & on a symmetric space G/K is
always closed, and hence w = 7*@ is also closed. Thus in this case, for a semi-
projectable LINPT 7, 7 is projectable if and only if dw = 0.

We give an example of non trivial LINPTs which are projectable on a reduci-
ble symmetric space. Put G = SO(4) and K = SO(2) x SO(2). Then G/Kis
a reducible symmetric space which is locally diffeomorphic to S x S%. One
can find a basis 0(4) =< X1, ..., Xs> which satisfies:

(X1, o] = X, [X1, Xs]=-X5, [Xi, Xu] = Xo,
[ Xy X5] = Xa, W[ XXzl = e, [Bu ) ==X,
(X2, Xs] = X3, [X3, X5] = —Xi, (X3, Xg] = —Xs,
[Xe, X5] = —X6, [Xa, Xe]=X5, [Xs, Xe] = —Xu,
(X1, X6] = [ X2, X5] = [ X3, X4] =0.

With respect to this basis, 0(2) x 0(2) =<X;, Xs>. Let {wi, ..., ws} be the
dual basis. Then we can find three projectable LINPTs:

771=X1/\X2/\X3/\X4/\X5/\X6,
m=XiAN(Xo+ X5) A (X3 — Xy) A X,
T]3:X1A(X3+X-1)/\(XZ—X3)/\X6.

In our definitions, the order of Nambu-Poisson tensors is greater than 2. So
s = X1 A Xg is not an LINPT but a regular Poisson tensor on SO(4). It is easy
to see that 7, and 73 are non trivial projectable LINPTs. Put 6; = i(,)Q, where
Q=wi A -+ Aws. Then we have 6, = (w2 —ws) A (w3 + wy), and O3 = (ws —
wi) A (w2 + ws). An easy computation shows that df> = df; = 0. Moreover 0>
and 63 are cohomologous on SO(4). Since 6 and 63 are projectable 2-forms, they
are considered to be the forms on SO(4)/S0(2) x SO(2). Since 65 — 03 =
d(2ws) and wg can not be considered as a form on G/K, they are not coho-
mologous as 2-forms on SO(4)/S0(2) x SO(2). And hence they become gen-
erators ofHQ(SO(4)/SO(2) x S0O(2)).

Let us consider the case that G/K is not a symmetric space. For example, let G
=U(n+1)and K = U(n). Then G/K is not a symmetric space but a (2n +
1)-dimensional homogeneous space which is diffeomorphic to S***!. The Lie
algebra u(n) of U(n) is contained in the Lie algebra u(n+ 1) of U(n+ 1) in
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the natural manner. Let X1, ..., X2 be a basis of u(n). Define matrices Yoz =
(apg) and Ya; = (byy) for1 < i< mand Yoni1 = (cpg) of u(n+ 1) by

Qi,n+1 = I, aps1,i= —1; otherwise 0,

bins1=V —1, bat1,i=V —1, otherwise 0,
Cni1.ns1 =1+ —1, otherwise 0.

Then u(n+1) =< X3} 5 X Yis vy Yondir>y Let {ovs s, o, “81, S5 62,1+1}
be its dual basis. Under these notations, define 7 by

n=Xi A ANXp2AYani1.

Then <Xi, ..., X;2, Yans1> is a Lie subalgebra of u(n + 1). With respect to the
volume form Q =ai A - Aa@ A Bi A KB, @=1MQL=HF A --- A
o, is a 2n-form which is projected down to G/K. Since dw = 0, we find that 7
is a nontrivial projectable LINPT.

Next let us consider the conditions for a left invariant Nambu-Poisson form
(LINPF) w to be a closed form. Let G' be an m-dimensional connected Lie
group with Lie algebra g, and K be a k-dimensional connected closed Lie sub-
group of G with Lie subalgebra £ =<Xi, ..., X;>. W ith respect to the canoni-
cal projection 7 : G— G/K, we consider a projectable LINPT 7 of order I(> k)
on G. Then by Lemma 3.1, we know that 7 has the expression: 77 = XiA- A
Xi A Xpi1 A --- A Xi. (See also the proof of Lemma 3.4.) Adding (m — [) vec-
tor fields X121, ..., Xmto X1, ..., Xi, we make a basis of g. Recall that each vec-
tor field X, (1 < i< m) is left invariant. We denote the dual basis of < X1, ...,
Xm>byws, ..., wm,and put @ =wi A -+ Awm. ThenQisa left invariant vol-
ume form on G. An LINPF w corresponding to 77 is given by w = i(1)€2 = wi+1
A A Wi

Proposition 3.6. Let 1) be a semi-projectable LINPT of order [ on G. Let <Xy,
..., X,n> be the basis of g constructed from 1) as above, and let {CE} be structure
constants of g corresponding to the basis <Xi, ..., Xm>. If 1310 =0 for
each r, 1 < r < I, then n is a projectable LINPT.

Proof. Since 7 is semi-projectable, 1) can be written as 7) = XiA - AN Xk A X
A - A X;. Then <X, ..., Xi» Xit1, ..., Xi> is a Lie subalgebra of g, and we
easily obtain
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m

l
dw = —Z Z Chuwr Aw.
r=1 p=Il+1

Thus the condition 3 r=1+1C% =0, 1 < r< [ implies dw = 0. Then for any
Xet,

LX)w=i(X)dw+ di(X)w=0,

and hence 7 is projectable. d

Let us apply Proposition 3.6 to the case that G is a connected unimodular
Lie group. Under this condition, we have

Corollary 3.7. Let n = Xi A -+ A X; be a semi-projectable LINPT on a con-
nected unimodular Lie group G. If the connected Lie subgroup L corresponding to
the Lie algebra | =<Xi, ..., X;> is also unimodular, then the LINPF w — i(n)2
is closed, and hence 1) is projectable.

Proof. Since G and L are unimodular, their structure constants satisfy 3 a—1Cq
=0 foreach i, 1 < i< m,and Z{;=1C;§ = 0 for each j, 1 < j < I. Hence
m

p=1+1C% = 0 for each r, 1 < r < I. Due to Proposition 3.6, this implies dw
= 0, and 7 becomes projectable. O

A typical example of Corollary 3.7 is the case that G = SO(n) (resp. U(n))
and K = S0(q) (resp. U(q)). Then G and K are unimodular Lie groups, and G/K
is a Stiefel manifold. Let 7) be a semi-projectable LINPT on G whose correspond-
ing Lie algebra induces a closed Lie subgroup L of G. Then SO(g) C L C SO(n)
(or U(q) € L C U(n)). Since Lis a closed Lie subgroup of G, L is unimodular.
Thus by Corollary 3.7, the LINPF w = i(1)Q is closed and 7 is projectable.
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